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A model learning system is constructed, in which an organism samples behaviors from a
behavioral repertoire in response to a stimulus and selects the behavior with the highest
payoff. The stimulus and most rewarding behavior may be kept in the organism’s long-term
memory and reused if the stimulus is encountered again. The value of the memory depends
on the reliability of the stimulus, that is, how the corresponding payoffs of behaviors change
over time. We describe how the inclusion of memory can increase the optimal sampling size in
environments with some stimulus reliability. In addition to using memory to guide behavior,
our organism may use information in its memory to choose the stimulus to which it reacts.
This choice is influenced by both the organism’s memory state and how many stimuli the
organism can observe (its sensory capability). The number of sampled behaviors, memory
length, and sensory capability are the variables that define the learning strategy. When all
stimuli have the same reliability, there appears to be only a single optimal learning strategy.
However, when there is heterogeneity in stimulus reliability, multiple locally optimal
strategies may exist.

r 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

Several verbal and mathematical treatments of
the evolutionary advantages of learning suggest
that the amount of environmental variability
is key (Arnold, 1978; Plotkin & Odling-smee,
1979; Johnston, 1982; Stephens, 1991; Bergman
& Feldman, 1995; Feldman et al., 1996; Dukas,
1998a; Ancel, 1999). If there is too little
variability, then one would expect a ‘‘hard-
wired’’ behavior appropriate for the constant
environment. If there is too much variability,
then learned behaviors rapidly lose their utility
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and learning is a costly waste of time. It seems
that the variability must be ‘‘just right;’’ a sort of
‘‘Goldilocks principle’’ applies. Dukas (1998a)
sums up this principle when he writes that while
learning is advantageous when there is some
pattern of environmental variation, ‘‘the learn-
ing rate (must) be sufficiently higher than the
rate of environmental change.’’

What exactly is meant by environmental
variability? Here we frame the question in terms
of a stimulus and a response. If the same
response to a given stimulus has different values
at two points in time, one might argue that a
change in the environment has occurred between
these points in time. Specifically, an organism
might visit the same object twice, with some
transformation (unperceived by the organism)
in the object occurring between visits that affects
r 2003 Elsevier Science Ltd. All rights reserved.



B. KERR AND M. W. FELDMAN170
the value of a given response. Alternatively, the
organism might visit two distinct objects, both
perceived as the same stimulus. If each object
yields a different value for a given response, the
‘‘single’’ stimulus appears to change. If the value
of the same response drops on average when the
‘‘environment changes,’’ the value of learning
will be adversely affected by high rates of
change. One might expect that the value of the
stimulus/response pair needs to remain constant
enough in order for learning to be favored. This
simply restates one component of the Goldilocks
principle.

A complication arises if the organism lives in
an environment with many stimuli, each posses-
sing its own dynamics. These different stimuli
may have different rates of change. That is, there
may be heterogeneity in environmental variabil-
ity. Heterogeneity plays heavily into Godfrey-
Smith’s (1998) environmental complexity thesis,
which states: ‘‘The function of cognition is to
enable the agent to deal with environmental
complexity.’’ Godfrey-Smith makes it clear that
he has heterogeneity in mind when he speaks of
complexity. Stephens (1987,1991) has modeled
systems where resources are heterogeneous in
their variability, while other authors (including
Krebs et al., 1978; Cohen, 1991) have explored
models in which foraging organisms must obtain
information about heterogeneous patch quality
through sampling. How does such heterogeneity
influence the value of certain forms of learning?
What general tenet, if any, will replace the
Goldilocks principle? In this paper, we attempt
to build a framework that extends these earlier
modeling efforts (Krebs et al., 1978; Stephens
1987, 1991; Cohen, 1991) whereby we can
rigorously explore these questions.

2. Optimality: Analytic Model and Results

2.1. SAMPLING

Our model organism’s life is modeled as a
series of discrete time steps. In this section we
consider a single time step in which an organism
reacts to an unfamiliar stimulus. Suppose that
there are nX2 behaviors available to an organ-
ism in response to this stimulus (Harley &
Maynard Smith, 1983); we denote the set of
behaviors as B ¼ fb1; b2; b3;y; bng: Depend-
ing on the stimulus, these behaviors might
represent different ways to obtain food, mates,
nesting territory, etc. Each behavior carries a
different numerical payoff value. For instance,
if the organism is foraging, the value might
represent caloric intake. We assume that payoff
value influences the fitness of the organism;
a higher payoff value corresponds to higher
fitness.

When the stimulus is unfamiliar, the time step
is broken into two periods: a sampling period
and a selection period. During the sampling
period, the organism tests a sequence of z

behaviors (zX1) and retains their payoff values
in working memory. Here we assume that each
behavior in the sequence is independently
sampled with replacement from the n equally
likely possibilities. Consequently, z could be less
than, equal to, or greater than n. During the
selection period, the organism chooses the
behavior with the highest associated value and
receives the corresponding payoff.

We assume that the sampling period supplies
the organism with information on the sampled
behaviors and that the payoff occurs during the
selection period. Thus, while sampling more
behaviors will, on average, lead to a better
selection, a longer sampling period leads to a
shorter selection period and thus less time to
reap the benefit. In other words, the payoff over
the time step is not only a function of the
behavior chosen, but also a function of the
length of the sampling and selection periods. We
introduce this feature into the model via a
sampling cost. Specifically, the fraction of the
time step taken up by sampling is cz, where c40
is interpreted as the fraction of the time step that
any sampled behavior consumes. (Note that
1pzo1=c; such that 1/c is the maximum number
of behaviors an organism can sample in a single
time step.)

So, time spent sampling is time taken away
from using the best behavior to reap the
corresponding payoff. Lewis (1986) showed that
cabbage butterflies that were not familiar with
a certain flower species took a certain amount of
time to discover nectar. Once the location of
nectar was learned (i.e., the appropriate behavior
to access nectar was discovered) this ‘‘discovery
time’’ dropped dramatically with future trips to
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the same species. Thus, there may be a time
investment in sampling behaviors in response to
an unfamiliar stimulus.

In our model, we assume each of the n

behaviors in the set B is uniquely assigned a
payoff value from the set P ¼ fp1; p2; p3;y;
png; where piopj if ioj: That is, there is
a one-to-one function F : B/P; where FðbÞ ¼
p with bAB and pAP: We assume that the
organism does not know the range of P or the
value of n; thus, despite the payoff of a current
sampled behavior, there is always the chance
that the organism may sample a behavior with a
higher payoff. Let the payoff that is associated
with the most rewarding behavior of the z

sampled behaviors be given by pmax: The
probability that pmax ¼ pk; Ppmax¼pk

ðzÞ; is given
by

Ppmax¼pk
ðzÞ ¼ Ppmaxppk

ðzÞ � Ppmaxppk�1
ðzÞ:

Because all z sampled behaviors are i.i.d. uni-
form random variables,

Ppmaxppk
ðzÞ ¼

k

n

� �z

:

Therefore, the probability that a sampling
individual chooses a behavior with payoff pk

(we abbreviate Ppmax¼pk
ðzÞ as Ppk jSðzÞ; where the

subscript S indicates that sampling occurred) is

Ppk jSðzÞ ¼
kz � ðk � 1Þz

nz
; ð1Þ

and the net payoff value obtained by an
organism with sampling size z is given by

Vpk jSðzÞ ¼ ð1� czÞpk: ð2Þ

Note that if the organism samples z behaviors,
then it has the fraction (1�cz) of the time step to
reap the benefit of the chosen behavior. Using
eqns (1) and (2), the expected payoff value for
sampling z behaviors is

%VSðzÞ ¼
Xn

k¼1

ðVpk jSðzÞÞðPpk jSðzÞÞ

¼
ð1� czÞ

nz

Xn

k¼1

½kz � ðk � 1Þz	pk: ð3Þ
For simplicity, we will make the assumption that
pk ¼ ðk � 1Þ=ðn � 1Þ; such that the payoffs range
between 0 and 1 per time step. Given this
assumption, we have

%VSðzÞ ¼ ð1� czÞ 1�
1

n � 1

Xn�1

k¼1

k

n

� �z
 !

: ð4Þ

With z arbitrary, no general closed form forPn�1
k¼1ðk=nÞz exists, although a recursive relation-

ship can be defined (Beardon, 1996).

2.2. OPTIMAL SAMPLING

To find the sampling size that produces the
maximum expected payoff value, we treat
expression (4) as a continuous function in z
and consider ð@ %VSðzÞ=@zÞ ¼ 0; which gives

c ¼
Pn�1

k¼1 ln ðn=kÞðk=nÞz

n � 1þ
Pn�1

k¼1fln ðn=kÞz � 1gðk=nÞz
: ð5Þ

Since the right-hand side of eqn (5) approaches
zero as z-N and is monotone decreasing in z,
there is a single critical point for %VSðzÞ; a global
maximum.

For a given value of c, we denote the z value
that solves expression (5) as znopt; which is a
positive real number greater than unity if the
right-hand side of eqn (5) exceeds c at z ¼ 1:
From eqn (5), it can be shown that znopt

monotonically decreases with c (i.e., optimal
sampling size decreases with increasing sampling
cost). Since there is only a single critical
point (the maximum), either the integer imme-
diately above or below znopt is the relevant
maximum for %VSðzÞ if only integer values are
allowed for z.

2.3. SAMPLING WITH MEMORY (LEARNING)

Suppose our organism lives for TX2 time
steps, and denote the current time step by t

ð1ptpTÞ: Each time step could conceivably
be filled with a bout of sampling and then
the selection of a behavior to use. However, the
lifetime of an organism is not necessarily the
concatenation of unrelated bouts of sampling.
Rather, if the most valuable behavior of the
sample is stored in long-term memory, this
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behavior might be reused in an appropriate
situation. By relying on past experience, the

organism may eschew the sampling process and its
associated costs. In Lewis’ (1986) study of
cabbage butterflies, the time to discover nectar
decreases in successive visits to the same flower
species because, presumably, the butterfly has
recorded information (location of nectar or a
method of nectar extraction) into its memory
and reuses it appropriately. Thus, memory may
relieve the cost of sampling.

We envision the complete environment of
an organism as a collection of NX2 stimuli,
where the set of stimuli is given by

P
¼

fs1; s2; s3; y; sNg: For each stimulus, assume
there are n behaviors available to the organism.
We will assume that for each stimulus sA

P
;

there exists a one-to-one function Fs : B/P;
associating a unique payoff value with each
behavior. In this section, we assume that
at each time step, the organism encounters
one of the N stimuli at random. When the
stimulus is novel, the organism samples z
behaviors (zX1) and picks the most valuable
behavior. Now, when this organism returns
to a stimulus that it has experienced in the past,
it may do one of the following: (i) sample z
behaviors and pick the most valuable or
(ii) reuse the behavior chosen from a previous
sampling bout with that stimulus. We
imagine that option (i) will occur if the organism
sampled in its previous encounter but
simply forgets the behavior it chose. Option (ii)
will occur when the organism sampled in a
previous encounter with the stimulus and re-
members the behavior it chose; that is, the
organism is able to retrieve the memory. (Note
that in Appendix B we consider organisms that
will use option (i) for a familiar stimulus when
the remembered payoff for the behavior in
memory is too lowFi.e., occasional resampling).
If sampling is costly, option (ii) would offer
a benefitFa behavior is initiated without the
costly sampling process.

In this paper, we take an extremely simplified
view of long-term memory. For each time step,
the behavior employed by the organism is
recorded into memory along with the stimulus
to which the organism reacted. This memory has
a maximum lifetime of m time steps (where
0pmpT). The variable m is considered the
long-term memory length. One can imagine that
when an organism reacts to a stimulus, a ‘‘timer’’
is set that will go off after m time steps. If the
stimulus is not seen again within m time steps
(i.e., the timer goes off), then the stimulus–
behavior pair in memory is lost. If the stimulus
is revisited within m time steps, the memory is
renewed (i.e., the timer is reset). As a conse-
quence of this memory structure, the organism
can remember at most m stimulus–behavior
pairs at any one time step. An explicit cost to
long-term memory, cm; might be imagined (e.g.,
some metabolic cost); however, in this paper, we
will assume cm ¼ 0:

Although memory allows an organism to
reuse behaviors in response to a familiar
stimulus and avoid a costly sampling process,
the success of remembered behaviors depends on
the constancy of behavioral payoff values.
That is, the probability that the payoff of
the used behavior has changed between the time
step at which the behavior was originally
sampled and the time step of its reuse will
influence the value of memory. Here, we
imagine that the payoffs for the behaviors in
the response repertoire to stimulus sA

P
change

with probability rs at every time step. Thus,
the parameter rs relates to the stimulus relia-
bility, with rs ¼ 0 corresponding to complete
reliability (the payoffs of behaviors never
change) and rs ¼ 1 meaning complete unrelia-
bility (the payoffs of behaviors changing every
time step).

Change in stimulus s is accommodated by
allowing the mapping from behaviors to payoffs,
Fs : B/P; to change over time steps (thus, Fs

becomes time-dependent). We model stimulus
change as follows: Consider some permutation
function on the set of behaviors, Cj : B/B:
There are n! C functions, which we arbitrarily
label C1; C2; C3; y; Cn!: Then we have the
following:

Fsðt þ 1Þ ¼

FsðtÞ if there is no change to stimulus s at t;

FsðtÞ3CJ if there is a change to stimulus s at t

(

ð6Þ



Fig. 1. Learning by an organism with z ¼ 3 and m ¼ 3: The three stimuli (N ¼ 3) in the environment are triangle, hexagon,
and diamond. There are five behaviors (n ¼ 5) the organism can use in response to each stimulus. Every time step, the
organism observes one of the stimuli (chosen at random). If the stimulus is not in memory, the organism will sample three
behaviors and record a stimulus–behavior pair into its memory (time steps 1, 2, 3 and 6 in the figure). It will receive the
payoff of the most valuable behavior (multiplied by a factor for the sampling cost) and will record this behavior into its
memory. In the columns marked ‘‘MEMORY STATE,’’ the cognitive mapping is given as a single row table with the
stimulus over the behavior recorded in response to it (a gray circle appears under the stimulus when the organism carries no
response to that stimulus in memory). In the cognitive mapping, the stimulus is black when the organism has it in memory
and is gray otherwise. The memory length of the organism can be visualized by a ‘‘timer’’ being set each time the organism
reacts to a given stimulus (the small clock underneath the stimulus–behavior pair). This timer expires after three time steps
(in the figure, it ticks clockwise starting from 12:00 to 4:00, then 4:00 to 8:00 and finally 8:00 back 12:00) and if the stimulus
is not revisited within three time steps, the stimulus–behavior pair is lost. For instance, the hexagon stimulus is experienced
at time step 1, but is lost at time step 4 since it was not experienced from time steps 2 to 4. If the experienced stimulus exists
in memory, the organism will reuse the behavior recorded in memory (time steps 4 and 5) and then reset its timer for that
stimulus/behavior pair. Note that the sampling cost (3c) is avoided when memory is used. The last column in the figure gives
the array of payoff values (the F mappings). Specifically, the matrix is filled with the payoff of each behavior (the rows) in
response to each stimulus (the columns). In the figure, the reliabilities of the stimuli differ. The triangle has r ¼ 0 (that is, the
payoff of each behavior never changes), the hexagon has r ¼ 0:5 (the payoffs undergo a random permutation on the
behaviors about 50% of the time), and the diamond has r ¼ 1 (the payoffs permute every time step). As a consequence of
these reliabilities, one can see that the reliable stimulus (the triangle) always returns a consistent payoff when the same
behavior is remembered (compare time step 3 with time step 5) whereas the unreliable stimulus (the diamond) returns an
inconsistent payoff for remembered behaviors (compare time step 2 with time step 4).
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with J a discrete random variable with
JBUnif ð1; n!Þ and where ‘‘3’’ represents func-
tional composition. Figure 1 illustrates stimulus
reliability and the memory structure with an
example of an individual behaving over several
time steps.
2.4. OPTIMAL LEARNING

2.4.1. Derivation of Expected Lifetime Payoff

We represent the sequence of payoffs over the
organism’s lifetime by the quantity p~kk ; with ~kk ¼
/k1; k2; k3; :::; kt; :::; kTS; such that the payoff
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of a behavior employed at time step t is given by
pkt

¼ ðkt � 1Þ=ðn � 1Þ: The lifetime payoff value,
LVp~kk ðz; mÞ; is the sum of the payoffs across time
steps. Specifically, if Vpkt

ðz; mÞ gives the net
payoff at time step t to an organism with
sampling size z and memory length m, we have

LVp~kk ðz; mÞ ¼
XT

t¼1

Vpkt
ðz; mÞ:

In this section, we deduce an expression for the
expected lifetime payoff value of an organism,
LV ðz; mÞ ¼

PT
t¼1

Pn
kt¼1 Vpkt

ðz; mÞðPpkt
ðz; mÞÞ;

where Ppkt
ðz; mÞ is the probability of employing

a behavior with a payoff of pkt
at time step t

(either from memory or from a sampling bout).
To this end, it helps to consider the possible
events that can occur at any time step for a given
organism. Let S be the event that an organism
samples in response to a stimulus, M be the
event that an organism remembers a stimulus, C
be the event that an organism reuses a consistent
behavior from memory and I be the event that
an organism reuses an inconsistent behavior
from memory. By ‘‘consistent’’ (‘‘inconsistent’’)
we mean that the payoffs of the behaviors have
not been (have been) randomly permutated since
the organism originally recorded the stimulus
and behavior into memory and therefore, the
remembered behavior has (may not have) the
same payoff as when it was originally stored into
memory. Note that one of the mutually exclusive
events S, C, or I must occur each time step (if C
or I occurs, then M must occur). Below we let A
denote one of events S, C, or I.

We can now give the general expression for
the expected lifetime payoff:

LV ðz; mÞ ¼
XT

t¼1

Xn

kt¼1

X
AAfS;C;Ig

ðVpkt jAðz; mÞÞ

� ðPpkt jAðz; mÞÞPAðt; z; mÞ:

If we know that event S, C, or I occurred at time
step t then the probability and net payoff value
of employing a behavior that gives a payoff of
pkt

¼ ðkt � 1Þ=ðn � 1Þ should not depend on
memory size or the time step. Also, the prob-
ability of a certain event does not depend on the
sampling size. So we can rewrite the above as

LV ðz; mÞ ¼
XT

t¼1

X
AAfS;C;Ig

" Xn

k¼1

ðVpk jAðzÞÞðPpk jAðzÞÞ

( )

� PAðt; mÞ

#

¼
XT

t¼1

X
A¼fS;C;Ig

ð %VAðzÞÞ PAðt; mÞð Þ; ð7Þ

where %VAðzÞ gives the expected payoff given
event A, and PAðt; mÞ gives the probability of
event A.

Equation (4) gives %VSðzÞ: If the organism
reuses a consistent behavior from memory, its
expected payoff is the same as if it had sampled
without any cost, namely

%VCðzÞ ¼
%VSðzÞ

1� cz
: ð8Þ

If the organism reuses an inconsistent behavior
from memory, there has been a random permu-
tation on the behavior to payoff map [see
eqn (6)]. Therefore, the expected payoff of an
inconsistent behavior is identical to that given by
sampling a single randomly chosen behavior
without the cost, namely

%VIðzÞ ¼
%VSð1Þ
1� c

: ð9Þ

In order to compute the probabilities of S, C,
and I, we must first consider the probability that
the organism uses memory (event M). This
probability is

PMðt; mÞ ¼ 1�
N � 1

N

� �minðm;t�1Þ

: ð10Þ

Note that PM(t,0)¼ 0 and PM(1,m)¼ 0, for all t
and m (i.e., without memory the organism must
sample and even with memory, the organism
must sample for its first time step). To verify
(10), consider an organism at time step t. The
last d time steps over which the organism can
remember is d ¼ minðm; t � 1Þ: One of the N

stimuli is experienced (at random) at time step t.
The probability that this stimulus has not been
experienced in the past d time steps is simply
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½ðN � 1Þ=N	d since the stimuli are experienced
independently and with equal probability every
time step. Thus, the probability that the organ-
ism remembers the stimulus is 1� ½ðN � 1Þ=N	d :

Since event S is the complement of the event
M, we have

PSðt; mÞ ¼ 1�PMðt; mÞ ¼
N �1

N

� �minðm;t�1Þ

: ð11Þ

We use the law of total probability to deduce
formulas for PCðt;mÞ and PIðt; mÞ:

PCðt;mÞ ¼ ðPCjMðt; mÞÞPMðt; mÞ; ð12Þ

PIðt; mÞ ¼ ðPIjMðt; mÞÞPMðt; mÞ

¼ ð1� PCjMðt; mÞÞPMðt; mÞ; ð13Þ

where PAjBðt; mÞ is the conditional probability of
event A given B at time step t for an organism
with memory size m. To derive eqns (12) and
(13), note that if the organism does not
remember a stimulus, then it cannot use a
consistent or inconsistent behavior from mem-
ory. Consequently, PCjSðt; mÞ ¼ PIjSðt; mÞ ¼ 0;
where event S is the complement of event M,
and eqns (12) and (13) result. The conditional
probability of event C (or I) given event M is not
defined when t ¼ 1 or m ¼ 0 (since event M

does not occur in such cases). We have
PCð1; mÞ ¼ PIð1; mÞ ¼ 0 for all m and PCðt; 0Þ ¼
PIðt; 0Þ ¼ 0 for all t, since M ¼ C,I and
PMð1; mÞ ¼ PMðt; 0Þ ¼ 0: When PMðt;mÞa0;
we have PIjMðt; mÞ ¼ 1� PCjMðt; mÞ [see eqn
(13)], since C-I ¼ +:

If we assume that all stimuli have the same
reliability (i.e., rs ¼ r for all sA

P
), we have

PCjMðt; mÞ ¼
Xminðm;t�1Þ

i¼1

fLði; t; mÞ

� ½PCðt � i; mÞ þ PSðt � i; mÞ	ð1� rÞig: ð14Þ

with Lði; t; mÞ¼ ððN �1Þi�1Nminðm;t�1Þ�iÞ/
Pminðm;t�1Þ

i¼1

ðN � 1Þi�1Nminðm;t�1Þ�i:
We derive eqn (14) as follows. At time step t,

since we condition on event M, the current
stimulus must have been experienced in one of
the d ¼ minðm; t � 1Þ past time steps. Suppose
that the stimulus currently experienced was most
recently experienced i time steps ago (at time step
t � i with 1pipd). The probability that the
stimulus has not changed since the most recent
encounter is ð1� rÞi: The probability that the
stimulus was unfamiliar when recorded in
memory at time step t � i is given by PSðt �
i; mÞ: However, we must also consider the
possibility that the organism used its memory
at time step t�i. The probability that the
organism used memory at time step t � i and
employed a consistent behavior is PCðt � i; mÞ:
Thus, the probability that an organism remem-
bers a consistent behavior, given that it remem-
bers a stimulus/behavior pair from i time steps
ago, is ½PSðt � i; mÞ þ PCðt � i; mÞ	ð1� rÞi: To
compute PCjMðt; mÞ; we must sum ½PSðt �
i; mÞ þ PCðt � i; mÞ	ð1� rÞi across the d time
steps. However, not all of the d time steps are
equally likely. The proportion of sequences in
which the current stimulus is experienced most
recently i time steps ago is given by Lði; t; mÞ:
Thus, the probability PCjMðt; mÞ is derived by
summing over i and weighting each of the d time
steps accordingly.

Given the parameters r and N, as well as the
memory size m, we can recursively compute
PSðt; mÞ; PCðt; mÞ; or PIðt; mÞ for any value of t
given that PSð1; mÞ ¼ 1; PMð1; mÞ ¼ 0;
PCð1; mÞ ¼ 0 and PIð1; mÞ ¼ 0: These probabil-
ities are used along with the expectation of the
conditional payoffs [eqns (4), (8) and (9)] to
compute the expected lifetime payoff for a given
ðz; mÞ combination. We then can compute the
optimal sampling size and memory length for
specific environmental conditions (c and r) by
searching the expected lifetime payoff surface for
maxima.

2.4.2. Optimal Sampling Revisited

For a given memory and stimulus reliability,
we find the sampling size that maximizes
expected lifetime payoff in eqn (7) by setting
ð@LV ðz; mÞ=@zÞ ¼ 0; which, after rearranging
and simplifying, is equivalent to

c ¼ ðaÞ
Pn�1

k¼1 ln ðn=kÞðk=nÞz

n � 1þ
Pn�1

k¼1fln ðn=kÞz � 1gðk=nÞz
; ð15Þ

with a¼
PT

t¼1½PCðt; mÞþPSðt; mÞ	/
PT

t¼1 PSðt; mÞ:
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Equation (15) is identical to eqn (5) except for
the a factor. If PCðt; mÞ ¼ 0 for all t, which will
happen if and only if m ¼ 0 or r ¼ 1 [see eqns
(10), (12) and (14)], then a ¼ 1: In such a case,
the znopt from eqn (5) will be identical to the z that
solves eqn (15), which we will call zopt: So,
without memory or if the stimuli change
every time step, the organism should use
the sampling size that maximizes the expected
payoff of a single sampling bout (i.e., zopt ¼ znopt).
On the other hand, if the organism has
some memory (m40) and the stimuli are not
completely unreliable (0pro1), then
PCðt;mÞ40 for some t, and a41: If a41;
then zopt4znopt; since the right-hand side of eqn
(5) is monotone decreasing in z. Thus, with
some memory and some stimulus reliability, it
may pay to invest in a higher sampling size than
that which maximizes payoff over a single time
step (see Fig. 2). The potential difference be-
tween zopt and znopt illustrates an important point:
sampling for long-term gain is a different
exercise than sampling for ‘‘myopic’’ gain
(sensu Mangel & Clark, 1988). This echoes a
result in dynamic programming models, where
optimal decisions made early in life (potentially
concerning the long-term condition of the
organism) differ from optimal decisions made
late in life (when the organism may be more
short-sighted).
Fig. 2. The z values that solve eqn (15) are plotted against
a fixed memory value for the case of c ¼ 0:01; n ¼ 10; T ¼
50; and N ¼ 10: Note that if ro1; the optimal sampling
size increases with memory. As r decreases (the stimuli
become more reliable), the optimal sampling size increases.
When m ¼ 0 or r ¼ 1; the z value that solves eqn (15) is
identical to the z value that solves eqn (5) (i.e., zopt ¼ znopt).
Otherwise, zopt4znopt:
2.4.3. Optimal Memory Length

If the sampling size, z, is fixed, numerical
methods using eqns (7)-(14) give the memory
length, mopt, that maximizes eqn (7). This
optimal memory is shown as a function of z in
Fig. 3. As the stimuli become less reliable (i.e., r
increases), optimal memory decreases for any
given sampling size, as is expected. As sampling
size (z) increases, optimal memory eventually
increases. With regard to memory use, there are
two essential considerations. First, what is the
cost of using an inconsistent behavior vs. the
benefit of using a consistent behavior? Second,
what is the probability that a reused behavior
from memory is consistent?

Figure 4 illustrates both considerations with a
graph of the expected payoff of a sampling bout
with sampling size z, %VSðzÞ; plotted with the
expected payoff value of a consistent memory,
%VCðzÞ; and an inconsistent memory, %VIðzÞ: When
compared with sampling, the potential benefit of
memory (using a consistent behavior) is given by
the difference between %VCðzÞ and %VSðzÞ; while the
potential cost of memory (using an inconsistent
behavior) is given by the difference between
%VSðzÞ and %VIðzÞ: We see that the benefit grows
with z, while the cost at first grows with z and
then decreases with z. If z4ž in Fig. 4, the
benefit of memory grows and the cost of memory
decreases as z increases. Thus, optimal memory
size should either stay constant or increase as z

increases from ž: As r decreases, the stimuli
become more reliable and the organism is more
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Fig. 3. The m values that optimize eqn (7) are plotted
against a fixed sampling size for the case of c ¼ 0:01; n ¼
10; T ¼ 50; and N ¼ 10: In general, the optimal memory
will increase with increased sampling size. Also, as r
decreases (the stimuli becoming more reliable), the optimal
memory will increase.



Fig. 4. Three functions of sampling size are shown. The
first is a horizontal dashed line [ %VIðzÞ] and gives the
expected payoff for an inconsistent behavior from memory.
The second is the solid black function and gives the
expected payoff, including cost (c ¼ 0:01), of sampling z
behaviors [ %VSðzÞ]. The third is the solid gray function and
gives the expected payoff for a consistent behavior from
memory [ %VCðzÞ]. Thus, the difference between the gray and
black functions gives the potential benefit of using memory
over sampling, while the difference between the black and
dashed functions gives the potential cost of using memory.
As z increases past the value marked z0 memory size should
not decrease (since the benefit grows and the cost shrinks).
Eventually %VSðzÞ will cross %VIðzÞ: If ž is this crossing value
(note źo1=c), we will consider only 1pzoź:
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likely to gain a benefit from memory. That is, the
likelihood of achieving %VCðzÞ over %VIðz0Þ in-
creases as r decreases; thus, the smaller the value
of r; the greater is the tendency for mopt to
increase as z increases (see Fig. 3).

2.4.4. Optimal ðz; mÞ Combinations

Here we assume that sampling size and
memory are free to vary independently of one
another and seek the optimal (z; m) combination
by searching numerically for the coordinates
ðz; mÞAZþ � Zþ that maximize the function in
eqn (7). The results are shown in Fig. 5. In the
figure, the three surfaces give the optimal z
coordinate, the optimal m coordinate and the
maximum expected lifetime payoff, respectively,
for a given (r; c) combination.

As expected, if the cost of sampling (c)
increases, the optimal sampling size decreases.
As c increases, optimal memory also has a
tendency to increase. In this case, remembering
behaviors serves as a way to avoid the costly
sampling process. When c goes up, %VSðzÞ in
Fig. 4 decreases for all z values greater than one
while %VCðzÞ and %VIðzÞ remain unchanged. Thus,
the potential benefit of using memory increases,
while the potential cost of using memory
decreases (see Fig. 4); consequently optimal
memory size should increase with increasing c.
As the stimuli become more reliable (as r
decreases), the optimal memory size increases.
Also, the optimal sampling size has a tendency to
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increase as r decreases. The idea here is that as
stimuli become more reliable it pays to invest
more into obtaining information (higher z) and
then spreading the cost over a longer memory
(higher m) since the memories have a higher
chance of being consistent. The maximum
expected lifetime payoff decreases as stimuli
become less reliable or the cost of sampling
increases, that is, as r or c increases.

3. Payoff Landscapes:
Simulation Model and Results

3.1. SIMULATION DESCRIPTION

In order to check the analytical predictions
and to explore scenarios not amenable to
mathematical analysis, we conducted an agent-
based simulation. In the simulation, the organ-
ism interacts with a randomly chosen stimulus
each time step. Each stimulus is associated with a
mapping between behaviors and payoffs. If the
stimulus is novel or forgotten, the organism
samples from its behavioral repertoire. Other-
wise, the organism reuses a behavior from
memory. Every time step there is a chance that
any stimulus will changeFsuch change is
achieved by a random permutation of the
behaviors on the payoffs. Table 1 gives the
Tabl

Values and ranges of values of varia

the simu

Description

Variable
z Number of behaviors sample
m Number of time steps a mem
s Number of stimuli observed

Parameter
n Behavioral repertoire size.
N Number of stimuli
T Number of time steps per life
c Slope of the cost of sampling
r Probability of stimulus chang

Set
B The collection of n behaviors
P The collection of n payoffs (pP

The collection of N stimuli (s
values or range of values for all parameters and
variables used in the simulation study.

The simulation results can be compared
directly with analytic results. In Fig. 6, the
expected lifetime payoffs computed using eqns
(7)-(14) are compared with averaged lifetime
payoffs of 100 000 simulated individuals. In the
case shown, and other cases considered but not
shown, the fit between the mathematical and
simulated data is quite good.
e 1
bles, parameters and sets used in

lations

Values for simulation

d 1–15
ory is retained 0–20
per time step 1–15

10
10

time 50
line 0.01–0.05
e per time step 0.0–1.0

(biAB) (arbitrary labels)

iAP) {0, 1/9, 2/9, 3/9,y, 1}

iA
P

) (arbitrary labels)



c
�

�

�

0.01

0.05

0.05

0.25

0.03
0.15

z o
pt

5

15

(a)

(b)

(c)

c

0.01

0.05

0.05

0.25

0.03
0.15

m
op

t

0

4

c

0.01

0.05

0.05

0.25

0.03
0.15

s o
pt

1

14

Fig. 7. (a) Optimal sampling size, (b) optimal memory,
and (c) optimal sensory capability are shown as functions of
r and c. See text for details. Note that when mopt ¼ 0; the
value for sopt could be any value in its range. This is because
without memory, any value for sensory capability gives an
identical strategy: the organism always samples from a
randomly chosen stimulus from the set of observed stimuli
(thus, the number of stimuli observed does not matter). So,
in part (c), the value of sopt when r ¼ 0:25 and c ¼ 0:01
could have been any value between 1 and 15.
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3.2. THE EFFECT OF SENSORY CAPABILITY

3.2.1. Learning with Extended
Sensory Capability

As Dukas (1998a) discusses, an animal not
only learns specific behaviors corresponding to
specific stimuli, but may also be capable of
selecting the stimulus to which it responds. Thus,
an animal may sort available stimuli by past
success and respond selectively to the ‘‘best’’
one. We incorporate this feature into our
simulation by allowing the organism to respond
to s (picked randomly with replacement) stimuli
each time step (sX1). The variable s serves as a
proxy for sensory capability. We assume there
is no explicit cost to sensory capability. If all
observed stimuli are unfamiliar (i.e., novel or
forgotten), the organism samples in response to
one of the stimuli. As before, sampling entails
some cost.

The organism reuses a behavior if at least one
of the observed stimuli exists in the organism’s
long-term memory. Moreover, if the number of
stimuli observed and remembered is greater than
one, the organism picks the ‘‘best stimulus,’’ that
is, the stimulus whose corresponding remem-
bered behavior yielded the highest payoff in the
past. Consequently, the organism now needs to
record three commodities into its long-term
memory: the stimulus to which it responds, the
behavior it employs and the payoff achieved for
that behavior. If a behavior is reused from
memory, the stimulus and behavior are refreshed
in memory with the value representing the
current payoff of the behavior. As before, when
memory is used, the sampling cost is avoided.

With s41; simulations are used to generate
average payoff surfaces to approximate
LV ðz; m; sÞ: We focus on the effects of sampling
cost (c) and stimulus reliability (r) on the
optimal cognitive coordinates.

3.2.2. Optimal Learning with Sensory Capability

We consider the following ranges for the
cognitive variables: 1pzp15; 0pmp10; and
1psp15: For each cognitive triplet (z; m; s), the
lifetime payoff is obtained via simulation and
averaged over 100 000 individuals. The optimal
coordinates (zopt; mopt; sopt) correspond to a
maximum average lifetime fitness for the
full landscape. In Fig. 7, we give the optimal
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coordinates. The general conclusions are that as
c increases, zopt tends to decrease while both mopt

and sopt tend to increase. As r decreases zopt; mopt

and sopt all tend to increase. Thus, it appears that
optimal sensory capability and optimal memory
behave similarly in response to c and r:

To see the connection between memory and
sensory capability, imagine that an organism
samples behaviors in response to an unfamiliar
stimulus. How many time steps are expected to
pass before the organism revisits this specific
stimulus? As s increases, the expected time of
return to a stimulus decreases. If t is the time of
return to a specific stimulus, the expectation and
variance of t are as follows:

%t ¼
1

1� ððN � 1Þ=NÞs
ð16Þ

and

varðtÞ ¼
ððN � 1Þ=NÞs

ð1� ðN � 1=NÞsÞ2
: ð17Þ

From eqns (16) and (17) it is clear that %t and
varðtÞ are decreasing functions of s. If an
organism has memory length m40 and if it
records a stimulus–behavior–payoff triplet into
its memory at time step t, it will hold on to that
information for either m time steps or until it
uses it to respond to the same stimulus at some
time step before t þ m: What eqns (16) and (17)
suggest is that the probability that the organism
will use its memory increases with sensory
capability. Thus, as stimuli become more reliable
(as r decreases in Fig. 7), the probability of
memory use increases due to a longer memory
(larger m) and lower return time to stimuli in
memory (larger s).

In this section, we have only considered cases
where the stimulus reliability is homogenous
(i.e., rs ¼ r for all sAfs1; s2; s3; y; sNgÞ:
—————————————————————————

Fig. 8. (a) The column of contour graphs is part of the pa
reliability). Each contour is a hyperplane with m held at some con
dark regions indicate low average lifetime payoff and light regio
environment, there is a single peak in the payoff landscape at (z ¼
of contour graphs is part of the payoff landscape with one
heterogeneous reliability). There are two peaks in the payoff land
peak,’’ and the other at (z ¼ 7; m ¼ 4; s ¼ 14), which we call t
Thus, all stimuli are equivalent and sensory
capability simply enhances the probability of
remembering the first several stimuli encoun-
tered. However, the model extension in Section
3.2.1 was framed to allow the organism to pick
the best stimulus. When stimuli are homoge-
neous, there exists no best stimulus and the
organism will choose a stimulus (from the s
observed stimuli) based on chance (i.e., stochas-
tic results of sampling). In order for sensory
capability and memory to filter out the best
stimulus, there must be something to filterFthis
leads to a consideration of heterogeneity in
stimulus reliability.

3.3. STIMULUS HETEROGENEITY

In what follows, we will restrict our attention
to individuals with memory only; i.e., m40: In
some cases, m ¼ 0 will produce a higher payoff
value and we will mention such cases as they
arise.

Consider N ¼ 10 stimuli, all of which are
completely unreliable (r ¼ 1 for all stimuli).
That is, the payoffs of the n ¼ 10 behaviors
undergo a random permutation every time step.
The organism lives for T ¼ 50 time steps and the
cost of sampling is determined by c ¼ 0:04: We
search for peaks on the average payoff landscape
over all (z; m; s) combinations where 1pzp15;
1pmp10; and 1psp15 (see Appendix A for a
description of the peak-isolating algorithm). We
find a single local maximum at ðzopt; mopt; soptÞ ¼
ð4; 1 ; 1Þ [see Fig. 8(a)]. Since everything is
unreliable, the organism does best by minimizing
its probability of remembering anything at all
(m ¼ 1 and s ¼ 1). In fact, if m ¼ 0; the average
lifetime payoff is even higher and the organism
benefits by losing memory altogether. An organ-
ism employing this peak strategy samples during
most of its life (if m ¼ 0; it samples all of its life)
——————————————————————-

yoff landscape with all stimuli unreliable (i.e., homogeneous
stant value (m ¼ 1;2,3, 4, and 5 in the figure). In the contours,
ns indicate high average lifetime payoff. In the homogeneous
4; m ¼ 1; s ¼ 1), which is marked with an X. (b) The column
stimulus reliable and all the other stimuli unreliable (i.e.,
scape, one at (z ¼ 4; m ¼ 1; s ¼ 1), which we call the ‘‘roving
he ‘‘homing peak.’’ Both peaks are marked with X’s.
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Fig. 9. The frequency of visits to each stimulus in the
heterogeneous environment described in section 3.3 aver-
aged over 5� 106 time steps. (a) The roving strategy (z ¼ 4;
m ¼ 1; s ¼ 1) shows a uniform distribution for stimulus
visits. (b) The homing strategy (z ¼ 7; m ¼ 4; s ¼ 14) shows
that visits to stimulus 1 (the reliable stimulus) are more than
twice as likely as visits to any other stimulus.
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and the sampling size z ¼ 4 maximizes its
expected return per sampling bout [solving
eqn(15) for z with n¼ 10, r¼ 1, m¼ 1 and
c¼ 0.04 gives zoptE4.19].

Now imagine an environment identical to that
described above with the exception that one
stimulus (say, stimulus 1) is completely reliable
(rs1

¼ 0; while rs ¼ 1 for sAfs2; s3; s4; y;
s10g). Thus, we have heterogeneity in stimulus
reliability in this new environment. When we
perform the peak-isolating algorithm (see Ap-
pendix A) on this slightly altered environment,
we discover two local peaks! One of the peaks is
the same as in the homogenous environment–
namely, (4,1,1). However, we also find a peak in
the neighborhood of (7,4,14). Note that these
two peaks differ in all the cognitive coordinates.
Figure 8(b) presents the landscape. We label the
(4,1,1) peak the ‘‘roving strategy’’ and the
(7,4,14) peak the ‘‘homing strategy’’ for reasons
that will become clear below.

The roving strategy is essentially a sampling
strategy. It is characterized by a low memory
(m ¼ 0 gives the highest average lifetime fitness),
a low sensory capability (s ¼ 1 if m40) and a
relatively low sampling size (z ¼ 4 in this case).
An organism using such a strategy records
little or no information to guide future behavior.
Rather, it ‘‘takes each day as it comes,’’
sampling in response to whichever stimulus
turns up. Consequently, the fraction of
visits that each stimulus receives (taken over
5 000 000 time steps) has essentially a uniform
distribution [see Fig. 9(a)]. Stimulus 1, which is
completely reliable, is visited no more often than
the other unreliable stimuli. In this way, the
organism simply wanders from stimulus to
stimulus.

The reliable stimulus in this heterogeneous
environment can be likened to ‘‘a needle in a
haystack.’’ An organism employing the roving
strategy does not pursue the needle and does just
fine via sampling. The homing strategy, on the
other hand, involves filtering the needle from the
hay. A homing individual possesses a higher
memory (m ¼ 4), a much higher sensory cap-
ability (s ¼ 14) and a higher sampling size
(z ¼ 7). We suggest that this strategy involves
picking out the reliable stimulus and then
revisiting this stimulus as much as possible. We
see that the majority of visits of the homing type
occur at the reliable stimulus 1 [see Fig. 9(b)].

We call this the homing strategy because the
organism, which may potentially utilize any of
the stimuli, specializes on a certain stimulus,
visiting it at a higher frequency than all the
others. This is not due to some pre-programmed
preference that has the organism hunting or
waiting for stimulus 1. Rather, given a very
simple set of rules (sample when stimuli are
unfamiliar, employ best remembered behavior
when familiar stimuli are experienced) the
specialization emerges under the cognitive com-
bination z ¼ 7; m ¼ 4; s ¼ 14 in the heteroge-
neous environment outlined above.

We turn now to why there is a valley between
the two peaks. Simply, what is good for one
strategy decreases the effectiveness of the other.
Giving a roving type more memory (or sensory
capability) is detrimental since the organism will
remember behaviors for the unreliable stimuli
most of the time. Thus, most of the time the
roving type will suffer from its memory. Increase
the memory and sensory capability enough and
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we cross the valley into the homing domain.
Here decreases in memory and sensory capabil-
ity will compromise the strategy. Decreasing
memory means the homing type may not hold
on to the reliable stimulus long enough to
compare its consistent (and, on average, high)
payoffs with the inconsistent payoffs of the
unreliable stimuli, which will affect its ability to
sort the reliable stimulus from the unreliable
stimuli. Decreasing the sensory capability may
mean that the homing individual does not
experience the reliable stimulus often enough to
guarantee its residence in memory [see eqns (16)
and (17)].

This landscape shows that there are two
locally optimal ways to process information
and interact with stimuli in the same environ-
ment. The relative heights of the peaks will
change with different parameter settings and
different fractions of reliable stimuli, but the
point is that using the same rules, organisms may
proceed to interact with the same environment in
very different ways with comparable success.

4. Discussion

4.1. ENVIRONMENT AND COGNITION

4.1.1. Environmental Reliability

Several theoretical investigations have shown
that it may be best to forget (or heavily discount)
past information when environmental para-
meters, which are estimated by the organism
through experience, are uncertain and changing
(McNamara & Houston, 1987; Mangel, 1990).
In these cases, as well as in our model, no explicit
cost of memory is assumed. Rather, in variable
environments, there are implicit costs to memory
Fspecifically, the cost of reusing information
that is no longer appropriate. Memory is
valuable only when it is reliable and such
reliability will depend on rates of environmental
change. Abel et al. (1998) describe genes whose
products may function as regulators that prevent
memory storage. In analogy with tumor sup-
pressors, these ‘‘memory suppressor genes may
decrease synaptic strength in much the same
way that tumor suppressor genes stop or limit
growth’’ (Abel et al., 1998, p. 279). How these
genes function within the network of other genes
relevant to information storage should depend
intimately on the value of memory in the context

of the organism’s environment.
In an environment where all the stimuli are

reliable, memory is bound to be valuable
(however, fitness may show diminishing returns
with memory increase in a constant environ-
ment, e.g., Shafir & Roughgarden, 1996). If the
stimuli become less reliable, a shorter memory
length may be adaptive. Environmental relia-
bility may play a key role in determining the
value of memory in learning organisms.

Such reliability is the focus in Stephens’ model
for the evolution of learning (Stephens, 1991).
Stephens shows that the predictability needed to
favor learning must operate within the genera-
tions; however, the requisite variability needed
to disfavor a fixed (i.e., non-learning) strategy
can operate either within or between generations
(see also Arnold, 1978; Stephens, 1987).
Although we do not consider multiple genera-
tions, we see that ‘‘too much variability’’ is
deleterious to learning as we define it. Stephens’
‘‘within generation predictability’’ is analogous
to the reliability parameter in our model. In
agreement with Stephens, we find that when all
the stimuli are unreliable, recording behaviors
into memory for future use is not optimal (i.e.,
when r ¼ 1; m ¼ 0 is the optimal memory size).
That is, if stimuli are changing every time step
within a generation, using memory to guide
behavior loses all value.

Environmental reliability has effects on other
cognitive variables as well. The results of Section
2.4.4 show that optimal sampling size increases
with increasing stimulus reliability. This is a
memory-mediated effect, since in more reliable
environments, optimal memory length will be
higher. If the stimuli are reliable, then investing
more in remembering a better behavior (i.e.,
taking a larger sample) will be the optimal
strategy (see Section 2.4.2). Although the cost
of sampling increases with z, this cost is not
incurred when the organism remembers. The
organism ‘‘pays off ’’ this extra cost by using
consistent behaviors from memory a certain
fraction of the time steps and avoiding any cost
of sampling for these time steps. Sensory
capability will also increase with increasing
reliability (see Section 3.2). We conjecture that
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sensing more stimuli each time step increases the
likelihood of using memory, which is favored in
a reliable world. Thus, the value of the entire
learning strategy is influenced by environmental
reliability.

4.1.2. Cognition in Heterogeneous Environments

So far, we have discussed reliability as if it
were a single entity. However, in an environment
with many stimuli, differences in the reliability of
stimuli are expected. In such a heterogeneous
environment, the prediction of the Goldilocks
principle that either learning or no learning
occurs, is replaced by the prediction that there
can be value in both learning and not learning.
Specifically, there may be value in employing
either a homing or a roving strategy. These
strategies are interesting because they produce
local optima in a payoff landscape. In homo-
geneous environments, there is always a single
peak in the payoff landscape. Heterogeneity is
necessary in order to ‘‘wrinkle the landscape.’’
With stimuli differing in reliability, there exists a
pattern in the environment. The organism can
attend to the pattern (home) or ignore it (rove).
But there is no ‘‘half-way’’ strategy in the
heterogeneous environments we consider
Fpeaks are separated by a distinct valley. These
results suggest that heterogeneity may be im-
portant in the maintenance of different types of
information processing strategies where similar
resources (stimuli) are exploited.

4.1.3. Rules of Thumb

For some time there has been emphasis on the
importance of ‘‘rules of thumb’’ in producing
complex behavior (see Stephens & Krebs, 1986).
The homing peak was so called because, on
average, the organism using the associated
strategy would specialize on reliable stimuli.
Observing this phenomenon, one might conclude
that the organism is directly computing a
derivative (rates of change of different stimuli)
and then visiting the more reliable stimuli. While
we do not deny this possibility, in our model,
organisms do not keep explicit information on
the rates of change of the stimuli they experience.
The ‘‘derivative is computed’’ as a by-product of
the comparison between memories of rewards.

4.2. LIMITATIONS AND EXTENSIONS

Our model tackles learning in a very simple
and abstract fashion. There are several pieces
missing from the picture and several unrealistic
assumptions. First, we have assumed an extreme
version of Thorndike’s Law of Effect (see
Peterson, 1991). That is, before sampling in
response to an unfamiliar stimulus, the organism
has equal probability of using any of its n
behaviors. Experience alters the probabilities of
behaviors in the most extreme way, so that a
specific behavior (the most valuable of those
sampled) is certain after the sampling bout.
There are other, less dramatic, ways to update
these probabilities. One general technique used
in early mathematical psychology involves linear
operators (Bush & Mosteller, 1955). Another
extreme assumption concerns the ‘‘sliding win-
dow’’ form of memory. There are other, more
realistic, ways to model memory. For instance,
we might allow information in memory to be
accessed with some probability, which is sensi-
tive to the time of the last use of that information
as well as the general intensity of its use.

Second, we have assumed that behaviors are
uniformly distributed with respect to payoff and
that all stimuli are identical in their payoff
distributions. However, it is certainly reasonable
to consider different payoff distributions, such
as many low payoff behaviors with a few high
payoff behaviors (a ‘‘difficult’’ stimulus) or many
high payoff behaviors with a few low payoff
behaviors (an ‘‘easy’’ stimulus). Besides differing
in payoff distributions, stimuli might also differ
in the range of potential payoffs, such that some
stimuli might have a high upper bound in payoff
(‘‘high quality’’) while other stimuli have a
low upper bound (‘‘low quality’’). It would be
interesting to repeat the above analysis to
investigate whether heterogeneity in payoff
distribution (‘‘difficulty’’) or payoff range
(‘‘quality’’) has effects comparable to hetero-
geneity in stimulus reliability.

Third, there may be explicit costs and/or
constraints to the cognitive variables in the
model. For instance, there may be limitations
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to how well an organism can assess the payoffs
to certain behaviors during a sampling bout (in
fact, the accuracy of payoff assessment may itself
depend on time and effort spent with the
relevant stimuli). Or consider sampling size. We
have assumed that short-term memory is large
enough to hold all the payoffs of the behaviors
in the sampling bouts. However, in studies on
humans, monkeys and pigeons, short-term
memory appears to be limited (Dukas, 1998b),
which, in our model, may constrain the sample
size. Also, Dukas (1998b) discusses possible
costs to long-term memory, such as extensive
resource expenditure. Such a cost could be
integrated into our model. Also there has been
laboratory and field work done on memory
interference (Lewis, 1986; Dukas, 1998b)F
where the use of one piece of information
interferes with the use of a second piece of
information. In our model, interference would
manifest itself as a complication in recalling a
behavioral response to one stimulus when other
stimulus–behavior pairs have been recorded.

Fourth, the variables investigated may influ-
ence the values of other model parameters or the
structure of the model. For instance, sensory
capability is measured as the number of stimuli
the organism can process in a time step.
However, as the true sensory capability of an
organism is extended, the organism may increase
the number of potential stimuli to which it
reacts; that is, N might increase. Furthermore,
with an extended sensory capability, the organ-
ism might be able to distinguish between two
objects that were previously perceived as the
same stimulus. If these two objects gave different
payoffs for the same behaviors, the organism, by
mistaking them for the same stimulus, would see
this ‘‘one’’ stimulus as unreliable. However, if it
could distinguish between the two objects, then
the organism might improve the reliability of the
stimuli in its environment; that is, r might
decrease. As another example, consider spatial
memory. If the organism can choose places to
forage, nest, mate, etc. based on past experience,
then the assumption that stimuli are chosen
randomly with replacement each time step will
be misplaced.

Fifth, we have omitted organismal variables
from the model that affect cognition. Mangel
(1993) discusses how motivation (some measure
of the physiological state of an animal) may
influence an animal’s decisions. For instance,
how many eggs a female insect carries may
influence her choice to accept a host plant species
for oviposition (Mangel, 1993). Here, we do not
consider the physiological state of our model
organism. Mangel discusses ways that learning
and motivation may be integrated to give more
comprehensive models of animal behavior and
decision-making.

Sixth, we have omitted variables from the
environment that will inevitably influence the
optimal learning strategy. For instance, in many
dynamic programming models, risk of predation
is explicitly incorporated into the model (see
Mangel & Clark, 1988; Houston & McNamara,
1999) and will influence the optimal sequence
of behaviors. In the context of our model, if
sampling is costly not only in terms of time, but
also in terms of exposure to predators (whereas
employment of a learned behavior is ‘‘safer’’)
then the optimal learning strategy would cer-
tainly be affected. The incorporation of mortal-
ity is bound to affect the value of other cognitive
parameters as well, such as memory and sensory
capability. Because a learned behavior can never
be valuable after the organism dies, mechanisms
by which the return time to stimuli is reduced
(e.g., higher sensory capability) may be favored
in an environment characterized by higher
mortality. To investigate such possibilities, we
would have to include the chance of mortality
for our learner at every time step.

Seventh, the ‘‘rules of learning’’ used in this
model may not be appropriate for many organ-
isms. In Appendix B we discuss ways to improve
the rules. Ultimately, however, modeling the
learning process should be informed by the
natural systems themselves. Given our simple
rules, it is intriguing to see distinct strategies
emerge corresponding to pure sampling and
standard specialization under heterogeneous
environments. In nearly all natural systems,
different animals possess different ways to
process information in their environmentFthe
results from our model suggest that environ-
mental heterogeneity may be important in the
evolution or maintenance of this cognitive
diversity.
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Lastly, we have only investigated the manner in
which the value of the organism’s learning
strategy is affected by the environment. We have
neglected the effect of learning process on the
state of the environment. As insects learn to
handle certain flowers, they drain nectar reserves.
As predators become adept at catching a
particular prey item, the number of that item
declines. Organisms not only respond to a
stimulus, but also may change the stimulus in
the process. The idea that organisms modify their
environment and consequently their own selective
pressures has been termed ‘‘niche construction’’
(see Lewontin, 1978,1982,1983; Odling-smee et al.,
1996; Laland et al., 1996,1999). In Cohen’s (1991)
model, there was explicit consideration of the
effect of the organism on the state of the
environment (variance in patch quality).

Within the context of our model, the organ-
ism, through its actions, might influence the
future payoff structure of the stimulus to which
it reacts. The actions of organisms might either
amplify or diminish heterogeneity in various
properties of their stimuli. In order to explore
these issues, a dynamic model would be ideal,
where both the state of the learning population
(for instance, the frequencies of different learn-
ing strategies) as well as the state of the stimulus
population (for instance, the frequencies of given
payoff structures and reliabilities) form the
variables of the system. With such model
extensions, cognition is no longer viewed as
simply a response to some exogenous environ-
ment, but as the result of an evolutionary
dialogue between the learning organism and
the affected environment.
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Appendix A

Technique for Isolating Peaks

In this appendix, we describe the technique
used to find local peaks in a payoff landscape.
Due to the stochastic nature of the simulation,
the payoff surfaces are somewhat bumpy. We
have attempted to ‘‘smooth out’’ the landscape
by computing the average lifetime payoff of a
large number of individuals (100 000). However,
simple hill climbing is bound to give some
spurious peaks in the landscape due to stochastic
anomalies. To minimize this effect, we employ
the following procedure:

(I) For a given parameter set, simulate the
average payoff landscape (as a function of z, m,
and s) three times.

(II) For each simulated landscape, pick 100
random starting points (here z, m and s are
picked uniformly from [1,15], [1,10], and [1,15],
respectively).

(III) For each random starting point perform
a simple hill climbing algorithm, where move-
ment is always in the direction of the greatest lift
in average lifetime payoff. This is done until a
local maximum is attained.
(IV) Each of the 100 optimal coordinate
triplets (producing local peaks) for a given
landscape is compared to all 200 optimal triplets
of the other two landscapes. If no optimal triplet
in the other two landscapes is within a given
neighborhood of the optimal triplet, it is
discarded. Here the ‘‘neighborhood criterion’’
is defined as follows: the optimal triplet of a
given landscape cannot be more than a Eu-
clidean distance of 1 from the optimal triplet of
another landscape. For example, if (2,5,12)
corresponds to a local peak, then (3,5,12),
(2,4,12), and (2,5,11) are all within its neighbor-
hood, while (3,6,12), (2,5,10), and (7,1,9) are not.

(V) Those peaks that were reached five times
or less (out of the 100) are ignored. The remain-
ing peaks for a given landscape are inspected
visually to confirm whether they appear as true
peaks. See Fig. 8 for an example.

Appendix B

Expected Payoff Incorporating a Cutoff

Given that our model organism can only
either sample or remember at each time step, is
the set of rules we have prescribed optimal?
Consider an organism that observes a single
stimulus per time step (s ¼ 1). Suppose this
organism samples behaviors in response to an
unreliable stimulus and from the behaviors
sampled, selects one with the highest payoff. At
some later time step, the organism reuses the
behavior from memory, but now receives a low
payoff (as the payoffs have permuted). If the
organism keeps the new payoff value for the
behavior in memory and revisits the same
stimulus at some still later time step (before the
memory has expired), we see a potential
problem. Given the above rule set, the organism
is forced to use a behavior that it remembers as
having a low payoff value. In essence, the low
payoff value itself gives the organism informa-
tion (i.e., that the stimulus may be unreliable)
and the above set of rules ignores such informa-
tion. This shows that in certain cases, the above
rule set is suboptimal.

While we will not pursue the optimal rule set
in this paper, we can make some suggestions for
improvement. To start, one might allow the
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organism to resample from a stimulus when it
possesses information about the stimulus in
memory. For instance, it might resample beha-
viors in response to a stimulus if the remembered
behavior has a payoff less than or equal to some
cutoff value w, which might be viewed as another
cognitive variable, the payoff threshold for
memory to be used. Note that the rule set we
use above assumes wo0 (i.e., no resampling).
However, for any (z; m; s) combination in a
given environment, there will be an optimal w

value that may be positive. When s ¼ 1; the
procedure outlined in Section 2.4.1 can be used
to deduce the optimal z, m, and w values in a
given environment, as we now outline.

Let S be the event that an organism samples in
response to an unfamiliar stimulus, R be the
event that the organism resamples in response to
a familiar stimulus (this occurs when the payoff
of the remembered behavior is less than or equal
to w), IA be the event that an organism reuses an
inconsistent behavior from memory with a
current payoff above w, IB be the event that
an organism reuses an inconsistent behavior
from memory with a current payoff below w,
and C be the event that an organism reuses a
consistent behavior from memory. The payoff of
the remembered behavior here must be greater
than w; otherwise, the organism resamples.

Here, we assume w ¼ ðkn � 1Þ=ðn � 1Þ; with
knAZþ and 1oknon: The expected lifetime
payoff is

LV ðz;m;wÞ ¼
XT

t¼1

f %VSðz; wÞPSðt; m; wÞ

þ %VRðz; wÞPRðt; m; wÞ

þ %VCðz; wÞPCðt; m; wÞ

þ %VIBðz; wÞPIBðt; m; wÞ

þ %VIAðz; wÞPIAðt; m; wÞg

with

%VCðz; wÞ ¼
nzðn � 1Þ � ðknÞzðkn � 1Þ �

Pn�1
k¼kn kz

½nz � ðknÞz	ðn � 1Þ
;

%VIBðz; wÞ ¼
kn � 1

2ðn � 1Þ
;

%VIAðz; wÞ ¼
nðn � 1Þ � knðkn � 1Þ

2ðn � knÞðn � 1Þ
;

where again kn ¼ wðn � 1Þ þ 1: PSðt; m; wÞ is
given by eqn (11) and %VSðz; wÞ and %VRðz; wÞ are
given by eqn (4). For the probabilities of the
remaining events, the following equation holds:

PGðt; m; wÞ ¼ PGjMðt; m; wÞPMðt; mÞ;

where GAfR; IA; IB; Cg and PMðt; mÞ is given
by eqn (10). The conditional probabilities are as
follows:

PRjMðt; m; wÞ ¼
Xminðm;t�1Þ

i¼1

Lði; t; mÞ ðPSðt � i; mÞ½

þ PRðt � i; m; wÞÞ
kn

n

� �z

þPIBðt � i; m; wÞ
�

PCjMðt; m; wÞ ¼
Xminðm;t�1Þ

i¼1

Lði; t; mÞ ððPSðt � i; mÞ½

þ PRðt � i; m; wÞÞ 1�
kn

n

� �z� �
þPCðt � i; m; wÞ	ð1� rÞi

PIB jMðt; m; wÞ¼
Xminðm;t�1Þ

i¼1

fLði; t; mÞ½ððPSðt � i; mÞ

þ PRðt � i; m; wÞÞð1� ðkn=nÞzÞ

þ ðPIAðt � i; m; wÞ

þ PCðt � i; m; wÞÞ	

� ðkn=nÞð1� ð1� rÞiÞg;

PIA jMðt; m; wÞ ¼
Xminðm;t�1Þ

i¼1

fLði; t; mÞ½ððPSðt�i; mÞ

þ PRðt � i; m; wÞÞð1�ðkn=nÞzÞ

þ ðPIAðt � i; m; wÞ

þ PCðt � i; m; wÞÞ	

� ð1� ðkn=nÞÞð1� ð1� rÞiÞ

þ PIAðt � i; m; wÞð1� rÞig:
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