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H I G H L I G H T S

� A birth-death model with migration is analyzed at mutation-selection balance.
� No assumptions are required about the strength of selection or mutation.
� Analytical approximations are tested against stochastic agent-based simulations.
� Limiting migration leads to more deleterious mutants at equilibrium.
� Limiting migration may lead to faster discovery of novel genotypes.
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a b s t r a c t

Typical mutation–selection models assume well-mixed populations, but dispersal and migration within
many natural populations is spatially limited. Such limitations can lead to enhanced variation among
locations as different types become clustered in different places. Such clustering weakens competition
between unlike types relative to competition between like types; thus, the rate by which a fitter type
displaces an inferior competitor can be affected by the spatial scale of movement. In this paper, we use a
birth-death model to show that limited migration can affect asexual populations by creating competitive
refugia. We use a moment closure approach to show that as population structure is introduced by
limiting migration, the equilibrial frequency of deleterious mutants increases. We support and extend
the model through stochastic simulation, and we use a spatially explicit cellular automaton approach to
corroborate the results. We discuss the implications of these results for standing variation in structured
populations and adaptive valley crossing in Wright’s “shifting balance” process.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most mutations affecting fitness appear to be deleterious (see
review by Eyre-Walker and Keightley, 2007). A deleterious mutation
is expected to persist in a population at a level influenced by the rate
at which it is generated and the strength of selection against it. This
mutation–selection balance was first developed mathematically by
Haldane and Fisher in the 1920’s in models that assumed well-mixed
populations (Fisher, 1930; Haldane, 1927). However, many natural
populations are not well mixed: individuals may not disperse, and
even if they do, dispersal or migration is often restricted to nearby
locations (Evans et al., 2009; Howells et al., 2013; Martin and

Canham, 2010). Such limited movement may influence the propor-
tion of deleterious mutants at equilibrium in several ways. In mating
diploid populations, the Wahlund effect (in which population-level
heterozygosity is depressed when subpopulations differ in allele
frequency) combines with dominance relationships among geno-
types to influence the frequency of deleterious mutant alleles (Roze
and Rousset, 2004; Whitlock, 2002). In haploid asexual models,
limiting migration increases between-deme variation and decreases
within-deme variation, but the extent to which this shift in variation
affects evolution is unclear.

Limitations to migration are not predicted to affect the equili-
brium frequency of deleterious mutants in asexual populations
when fitness is independent of local composition and density. For
instance, Whitlock (2002) finds no effect of migration under a
“hard selection” scheme (in which absolute fitness is determined
solely by genotype, and thus demes of different compositions may
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differ in productivity). However, in “soft selection” regimes (in
which relative fitness within a deme depends on genotype, but
each deme’s productivity is the same regardless of composition),
demes enriched for mutants are as productive as demes enriched
for wild types. Such mutant-rich demes may serve as competitive
refugia. Thus, in soft selection schemes, limiting migration can
increase the frequencies of deleterious mutants (Roze and Rousset,
2004; Whitlock, 2002).

As mutation, selection and migration occur in a subdivided
population, both first-order moments (i.e., the mean) and higher-
order moments (i.e., variance, skew, kurtosis, etc.) of allele frequencies
across demes can change. Previous models have estimated higher-
order moments (or related quantities like FST) in terms of first-order
moments under an assumption of weak selection. In this paper, we
take a different approach. We build an ecological model of a
subdivided population, in which higher-order moments are dynamic
variables. No assumptions about the strength of selection or mutation
are required. Using this model, we find that limited migration
increases the fraction of mutants at mutation–selection balance.
However, our moment-closure approach (in which we express third-
order moments in terms of lower-order moments) is exact only under
total migration. Thus, our analytical results are accurate when there is
minimal subdivision. Similar moment closure approaches have been
used to model ecological neutrality, competition, and stability (Bolker
and Pacala, 1997; Haegeman and Loreau, 2011; Neuhauser, 2002;
Vanpeteghem and Haegeman, 2010). We use computer simulations to
confirm that the fraction of mutants at equilibrium increases under
limited migration (where the mathematical analysis is approximate).
The simulations also show spatial segregation of types, suggesting that
mutant-rich areas act as competitive refugia.

2. Mutation–selection balance in a subdivided population

In our model, a population inhabits a metapopulation of patches.
Space is implicit in this model; all patches are equally “far” from any
given patch. Migration between patches occurs at birth with a
specified probability. When the probability is one, every offspring
migrates to a random patch, and the population is essentially well
mixed. When the probability is lowered slightly from one, there is a
small chance an offspring will stay in its natal patch, and thus a
modicum of spatial structure is introduced.

2.1. Terminology and life cycle

Consider two genotypes W and M, for wild type and mutant,
respectively, inhabiting a metapopulation with an infinite number
of patches. The population size of each patch is finite. In all that
follows, genotype indices i and j will be used where i; jAfW ;Mg
and ia j. The per capita birth rate of genotype i is given by
Fi ni;nj
� �¼ f i�βiðniþαijnjÞ, where ni and nj are the numbers of

genotype i and j in the patch, f i is the intrinsic growth rate of
genotype i, βi measures the effect of intra-genotypic competition,
and αij is an inter-genotypic conversion factor (i.e., one individual
of genotype j counts as αij individuals of genotype i). Genotype i
dies with rate δi. Mutation from genotype i to j occurs during the
birth process with probability μi-j. Migration also occurs at birth,
when genotype i migrates to a random patch with probability mi.
The population evolves stochastically in continuous time.

2.2. Moment dynamics

Let NiðtÞ be the expected number of genotype i per patch at
time t. For typographical convenience, we drop the explicit
reference to time dependence in our notation for the terms and
equations that follow (e.g., NiðtÞ is written Ni). In Appendix 1 we

show that

dNi

dt
¼ 1�μi-j
� �

Ni Fi Niji;Njji
� �

þμj-i Nj Fj Njjj;Nijj
� �

�δi Ni; ð1Þ

where Nijj is the expected number of individuals of genotype i in
the patch of a randomly chosen individual of genotype j, with
i; jAfW ;Mg.

It can be shown that Niji ¼Niþσ2i =Ni, where σ2i is the variance
in the number of genotype i. When individuals of the given
genotype are uniformly distributed (i.e., variance is zero), this
reduces to the mean Ni. Similarly, Nijj ¼NiþC=Nj, where C is the
covariance between the numbers of genotypes i and j. When the
two genotypes are independently distributed (i.e., covariance is
zero) this term reduces to the mean Ni. Covariance may be
positive, indicating association between types, or negative, indi-
cating segregation of types.

Thus the dynamics of the first order moments Ni and Nj rely on
second order moments σ2i , σ

2
j , and C. The equations governing the

dynamics of these second order moments involve third order
moments, the differential equations for the third order moments
involve fourth order moments, and so on. Our task is similar to
Hercules’ battle with the Hydra (in spirit, not magnitude!). With
each Hydra head Hercules sliced off, new heads popped up in its
place. For each moment dynamical equation we describe, the
description of new, higher-order moment equations becomes
necessary. We must find a way to stem the endless flow of
higher-order moments. Hercules seared the necks of the Hydra
to prevent the regrowth of the heads; we close our system of
differential equations by a second-order moment closure techni-
que. We approximate third-order moments in terms of lower-
order moments (see Appendix 1 for details), thus sealing the
endless flow. Our moment closure approximation is exact when
migration is absolute (i.e., mW ¼mM ¼ 1), and we are not limited
by assumptions of near neutrality (Neuhauser, 2002). With this
approximation, the dynamics for the second order moments are
given by:

dσ2i
dt

¼ dNi

dt
þ2δi Ni�σ2i

� �
þ2 1�mið Þ 1�μi-j

� �
f iσ

2
i �βi Niþ2Niσ

2
i

� ��βiαij NiCþNjσ
2
i

� �� �
þ2 1�mj
� �

μj-i f jC�βj2NjC�βjαji NiCþNjσ
2
i

� �n o
ð2Þ

dC
dt

¼ � δiþδj
� �

Cþ 1�mið Þ 1�μi-j
� �

f iC�βi2NiC�βiαij NjCþNiσ
2
j

� �n o
þ 1�mj
� �

μj-i f jσ
2
j �βj Njþ2Njσ

2
j

� �
�βjαji NjCþNiσ

2
j

� �n o

þ 1�mj
� �

1�μj-i
� �

f jC�βj2NjC�βjαji NiCþNjσ
2
i

� �n o
þ 1�mið Þμi-j f iσ

2
i �βi Niþ2Niσ

2
i

� ��βiαij NiCþNjσ
2
i

� �� �
ð3Þ

2.3. Mutation–selection balance

Our dynamical system contains many parameters. To simplify
matters, we assume mW ¼mM ¼m, f W ¼ f M ¼ f , βW ¼ βM ¼ β,
αWM ¼ αMW ¼ 1, μW-M ¼ μ, and μM-W ¼ 0. Thus, we assume our
genotypes are identical in all parameters except their death rates,
which define a W to M mutation as deleterious (i.e. δM4δW 40),
and their mutation rates. Consequently, we only consider viability
selection in this analysis, though we simulate other possibilities
below. We have also assumed that intra-genotypic competition is
identical to inter-genotypic competition (the α parameters are set
to unity), and that back mutation does not occur. This might be
realistic if the mutation from wild type to the mutant involves a
deletion, but even if this mutation is a base substitution, the
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density of mutants is often so low that back mutation does not
greatly affect our results (see simulations below).

In Appendix 2, we derive the mutant fraction of the population
at equilibrium under full migration (m¼ 1). Because the fraction of
mutants cannot be greater than one, there are parameter con-
straints on the analysis to ensure mutation does not “overwhelm”

selection. Within those parameter constraints, the fraction of
mutants at mutation–selection balance is

Φ¼ μδW
ð1�μÞðδM�δW Þ: ð4Þ

Like the classical result for a panmictic haploid population, for
which Φ¼ ðμ=sÞ where 1�s is the fitness of a mutant relative to a
wild-type (Crow and Kimura, 1970), our expression is proportional
to μ (for small μ) and inversely proportional to a measure of the
selective disadvantage of the mutant (ðδM=δW Þ�1).

How does this fraction change as spatial structure is intro-
duced; that is, what happens to Φ as m is lowered from unity?
Since Eqs. (2) and (3) are exact form¼ 1, the partial derivative of Φ
with respect to m can be computed exactly at m¼ 1 (Neuhauser,
2002). In Appendix 3, we derive the following:

∂Φ
∂m

����
m ¼ 1

¼ � βμ

ð1�μÞ2δM ðδM=δW Þ2�1
n o: ð5Þ

This expression demonstrates that ∂Φ=∂m
��
m ¼ 1o0 for 0oμo

1, so the fraction of deleterious mutants at equilibrium always
increases when a small amount of structure is introduced into
the model.

2.4. Simulation of the spatial model

Our analysis is exact when all offspring migrate, but becomes
approximate as soon as some offspring remain in their natal

patches. How well do the approximations capture actual
dynamics? Here, we explore the model via simulation.

In the simulation, we seed a finite (but large) number of
patches P with wild type and mutant individuals, and simulate
evolution using a Gillespie algorithm in which birth and death
events occur stochastically (see Appendix 4 for details). In simula-
tion runs with absolute migration, all first order moments and
second order moments approach our analytic predictions as
equilibrium is reached, even when initialized far from the calcu-
lated equilibrium (Sup. Fig. 1). This is expected, as our analysis is
exact when migration is absolute. As the probability of migration
is lowered from unity, our analysis becomes approximate. Fig. 1
shows simulation results across a range of migration probabilities,
and the analytical prediction extrapolated from Eq. (5). At high
levels of migration, the simulation corresponds well with the
analysis, with Φ following its derivative calculated at m¼ 1 (Fig. 1,
inset). As migration drops further, the mutant frequency rises
faster than the linear extrapolation from our analytical model
(Fig. 1). The correspondence between our finite simulation and our
deterministic analysis for high migration indicates that the num-
ber of patches P is large enough for the metapopulation to behave
deterministically. Moreover, results are not appreciably affected
when fewer patches are used (Sup. Fig. 2B). Results are also not
appreciably affected when back mutation is allowed (Sup. Fig. 2A).

Parameters for Fig. 1 were chosen to illustrate a large effect of
limited migration on the mutant fraction at mutation–selection
balance. When the competition parameter β is decreased,
abs ∂Φ=∂m

��
m ¼ 1

� �
is proportionately decreased (see Eq. 5) and

the per-patch carrying capacity is increased, but the simulated
mutant frequency still rises faster than the linear extrapolation
from our model (Sup. Fig. 2C). Similar results to those shown in
Fig. 1 occur when both the mutation rate and the selective
disadvantage of mutants are decreased (Sup. Fig. 2D).

To see why limited migration increases the fraction of deleter-
ious mutants in a population, we follow a simulation (Fig. 2) as it
transitions from absolute migration to limited migration (i.e., m¼ 1
to m¼ 0:5). We see that when limited migration is introduced, the
mutant frequency increases (Fig. 2A), the variance in mutant
density increases (i.e., the mutants become more clumped), and
the covariance between the densities of the two genotypes becomes
negative (i.e., patches with many wild-type genotypes tend to have
fewer mutant genotypes, and vice versa) (Fig. 2B).

Such spatial segregation leads to an increase in the fraction of
inhabited patches that house mutant-only populations (Sup. Fig.
3A). The fraction of mutants in mutant-only patches also increases
as the migration rate decreases (Sup. Fig. 3B). Notably, the fraction
of mutants in patches that also house wild type genotypes does
not increase as the migration rate decreases (Sup. Fig. 3B). Thus,
the increase of mutants in mutant-only patches may suffice to
explain the overall increase in mutants at limited migration rates.

We conclude that limited migration leads to a higher mutant
frequency at mutation–selection balance because the less fit mutant is
able to escape competition with the wild type due to spatial segrega-
tion. Thus, mutant-rich patches are competitive refugia that allow the
mutant genotype to persist in relative isolation from the competitively
superior wild type. If this explanation is correct, limited migration
should safeguard deleterious mutants regardless of whether selection
occurs via differences in viability or fecundity, whether space is explicit
or implicit, and whether the spatially distributed units are populations
or individuals.

3. A lattice-based approach

Our next approach considers individuals that are embedded in a
lattice. Here, unlike our first approach, (a) space is explicit,
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Fig. 1. Stochastic simulation under various migration rates. Frequency of deleter-
ious mutants at mutation–selection balance across various probabilities of migra-
tion as found by simulation (red circles), compared to the m¼1 derivative of our
analytical model (black dashed line). The analytically calculated mutant fraction at
full migration is given as a gray dotted horizontal line for comparison. At high
migration probabilities, the simulation results agree well with our analytical model
(see inset). As the probability of migration decreases further from unity, the
fraction of deleterious mutants increases faster than the analytical extrapolation.
Large data points and shading represent mean values and standard deviation of 20–
40 replicate simulations (small data points) using parameter values P ¼ 104, f ¼ 0:5,
β¼ 0:2, μ¼ 0:1, δW ¼ 0:05, δM ¼ 0:1, corresponding to a per-patch carrying capacity
of approximately f � δW

β ¼ 2:25.
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(b) population structure varies with dispersal distance, (c) the
“patches” house individuals rather than subpopulations, and (d) we
consider both viability and fecundity selection. A similar lattice-based
approach has been used to explore many eco-evolutionary aspects of
spatially structured populations, including the invasion of rare types,
species coexistence, host-parasite evolution, spatial structuring of
communities, and evolutionary trajectories (Débarre et al., 2012;
Durrett and Levin, 1997; Hauert and Doebeli, 2004; Kerr et al., 2002).

In our simulation, we consider two haploid asexual genotypes:
wild type (W) and mutant (M). These genotypes occupy an L� L
regular square lattice with periodic boundaries (i.e., a toroidal
geometry). Each lattice point may take one of three states: empty,
wild type, or mutant. At each update, a point is chosen at random.
If this focal point is “filled” with a wild type, the wild type dies
with probability δnW , giving a transformation to the empty state.
Likewise, a mutant that is chosen will die with probability δnM
(where δnMZδnW 40).

If the focal point is already empty, then a birth event can occur,
where an individual in a pre-defined neighborhood of the focal
point produces an offspring that fills the focal point (giving a
transformation to a filled state). Let xW and xM be the fraction of
the focal point’s neighborhood occupied by wild type and mutant
lattice points, respectively. Then with probabilities f nWxW and f nMxM
the parent of the individual “born into” the focal point is wild type
and mutant, respectively. The parameters f nW and f nM represent the
fecundities of wild-type and mutant individuals (where
0r f nMr f nW r1). The focal point stays empty with probability
1� f nWxW � f nMxM . Mutation occurs at birth: from wild type to
mutant with probability μn

W-M , and from mutant to wild type
with probability μn

M-W . The degree of population structure is
controlled by adjusting the size of the neighborhood around any
focal point (effectively altering the distribution of distance at
dispersal). We focus on three cases: a von Neumann neighborhood
(where the lattice points immediately to the north, east, south and
west of the focal point comprise the neighborhood), a Moore
neighborhood (where the eight lattice points nearest the focal
point constitute the neighborhood), and a Global neighborhood
(where the entire lattice, minus the focal point, comprises the
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Fig. 2. A simulated shift in the probability of migration. When migration becomes
limited (grey-shaded portion of plots), the increase in deleterious mutant fre-
quency (A) coincides with an increase in the variance in mutant density and a
decrease in the covariance between mutant and wild type densities (B, variances
are divided by the means of their corresponding variables, and covariance is
divided by the product of the roots of the two means). Time units are relative, and
defined by a Gillespie algorithm described in Appendix 4. Solid lines and colored
shading represent the mean7SD of 16 replicate simulations using the parameter
values listed in Fig. 1.
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Fig. 3. Lattice-based simulation results. The frequency of deleterious mutants at mutation–selection balance across various neighborhood sizes in lattice-based simulations
with viability selection (A) or fecundity selection (B). As dispersal is limited to smaller neighborhoods, the frequency of deleterious mutants increases. Large data points
represent mean values of 24 replicate simulations (small data points) using parameter values L¼ 200, μn

W-M ¼ 0:1, μn
M-W ¼ 0:02, and either viability selection (A, with

δnW ¼ 0:1, δnM ¼ 0:2, f nW ¼ f nM ¼ 1) or fecundity selection (B, with δnW ¼ δnM ¼ 0:1, f nW ¼ 1, f nM ¼ 0:5).
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neighborhood). Thus, the evolving population can range from
highly structured (von Neumann neighborhood) to effectively well
mixed (Global neighborhood).

Fig. 3 shows that smaller dispersal neighborhoods lead to
higher mutant frequencies at equilibrium, corroborating our prior
analysis. This pattern holds under both pure viability selection
(δnM4δnW and f nM ¼ f nW ) and pure fecundity selection (δnM ¼ δnW and
f nMo f nW ).

4. Discussion

We find analytically and computationally that limited migra-
tion increases the frequency of deleterious mutants, and this
increase is not restricted to a specific form of space or mode of
selection. Prior models of selection in metapopulations have
shown effects of limited migration when local interactions are
defined by mating, or when mutant-rich demes have similar
productivity to wild type enriched demes, and can thus act as
competitive refugia for mutants (Glémin et al., 2003; Roze and
Rousset, 2004; Whitlock, 2002). In this paper, we embedded
competition in an explicitly ecological framework, which allows
us to manifest local interactions explicitly as density-dependent
fecundity. We used a moment closure approach that expresses
higher-order moments in terms of lower-order moments, there-
fore allowing those higher-order moments to vary dynamically as
we began to limit migration. We showed that limited migration
can affect asexual populations by segregating types. Essentially,
limiting migration has no effect on the generation of mutants, but
hampers the effective strength of selection (Cherry and Wakeley,
2003) by sheltering alleles from global competition, and so tips the
mutation–selection balance in favor of deleterious mutations.
Generally, whenever there is both variation in localities and local
interaction, migration rate will be a salient factor in determining
the frequency of deleterious mutants.

Mutant frequency is sometimes used to estimate mutation
rates of microbes. Using such a method, a structured environment
may appear mutagenic because a higher frequency of mutants is
found. For example, Bjedov et al. (2003) find a disparity in mutant
frequencies between liquid and agar bacterial cultures, and attri-
bute it to oxidative stress incurred during colonial growth on agar.
This explanation is certainly plausible, but the colony structure
itself may contribute to the increased mutant frequency. When
going from an unstructured to a structured environment (e.g., a
flask to an agar plate), the frequency of deleterious mutants may
increase even if the mutation rate is constant.

4.1. Adaptive valley crossing

If a single deleterious mutation is complemented by a second
mutation that improves the fitness of the organism above the wild
type, the frequency (and number) of the original mutant may be
relevant for crossing “adaptive valleys”. Recent theoretical studies
have elucidated how well-mixed populations cross adaptive val-
leys, and at what rate (Weissman et al., 2010, 2009). However,
Sewall Wright’s shifting balance process is predicated on the idea
that, collectively, semi-isolated subpopulations would explore a
landscape in a way unavailable to well-mixed populations
(Pigliucci, 2008; Wright, 1988, 1932). To cross a valley, a popula-
tion must first discover a new peak, and then have the peak
genotype spread through the population. Increasing migration
between separated patches hinders exploration of novel geno-
types (Whitlock, 2003), but, once a beneficial genotype is dis-
covered, the increased migration facilitates its spread (Jain et al.,
2011; Rozen et al., 2008). In the rugged landscapes that were the
focus of Wright’s shifting balance, the rate-limiting step in
adaptation may be the discovery of novel genotypes (i.e., finding
new peaks) rather than their spread through a population. If this is
the case, limited migration may speed the rate of adaptation.

If valley crossing requires multiple “downward” steps, the
facilitating effect of limited migration is amplified. Limited
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Fig. 4. Stochastic simulations with a chain of sequential deleterious mutants in a metapopulation approach. The wild-type genotype yields the first mutant via mutation; the
first mutant yields the relatively deleterious double mutant via mutation; and so on. The density of each genotype is shown relative to its density in a well-mixed population
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in this simulation are: P ¼ 104, f ¼ 0:5, β¼ 0:2, μW-M ¼ μM-M2 ¼ μM2-M3 ¼ 0:1, μM3-M2 ¼ μM2-M ¼ μM-W ¼ 0:01, δW ¼ 0:05, δM ¼ 0:1, δM2 ¼ 0:2, δM3 ¼ 0:4.
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migration protects not only deleterious single mutants from
competition with wild types, but also relatively deleterious double
mutants from competition with single mutants (and wild types).
When deleterious double mutants are added to our metapopula-
tion simulation, we see the amplified effect of limited migration
on the double-mutant frequency (Fig. 4A); when we add triple
mutants, the effect of limited migration amplifies further (Fig. 4B).
This effect on double and triple mutants is also observed in our
lattice-based approach (Sup. Fig. 4).

For sufficiently wide valleys, a population starting with only
wild type individuals may discover the peak genotype faster when
its migration is limited (Fig. 5). For certain parameter values, a
population whose migration is limited may cross even the nar-
rowest valley – one deleterious mutant between two peak
genotypes – faster than an unstructured population (Bitbol and
Schwab, 2014). Note that when only upward steps are required for
adaptation (e.g., a smooth landscape) then the rate-limiting step in
adaptation is the spread of beneficial genotypes, and thus limited
migration will inhibit adaptation (Kryazhimskiy et al., 2012).

The limited migration of individuals generally slows the spread
of advantageous traits. However, it is precisely this dampening of
competition that can allow spatially structured populations to
safeguard deleterious mutants. By harboring this diversity, it may
be possible for structured populations to discover novel genotypes
faster, even if the benefit spreads more slowly.
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Appendix 1. Moment equations

Mean density dynamics

In this appendix, we derive the dynamical equations for our
first and second-order moments. We assume our population
inhabits a metapopulation of infinite patches (each of which
houses a finite population), allowing us to use expectation values
for our patch dynamics. We start with the dynamics of the mean
genotype abundances. Let qiðtÞ be a random variable giving the
number of individuals of genotype iAfW ;Mg within a randomly
selected patch at time t. If we consider a period of time, Δt, small
enough that the probability of more than one event occuring
during that interval is vanishing small, we have the following:

qi tþΔtð Þ ¼
qi tð Þ�1 with probability P�

i

qi tð Þþ1 with probability Pþ
i

(
; ðA1:1Þ

where

P�
i ¼ δiqi tð ÞΔt; ðA1:2Þ

and

Pþ
i ¼ 1�mið Þ 1�μi-j

� �
Fi qi tð Þ; qj tð Þ
� �

qi tð ÞΔt

þ 1�mj
� �

μj-iFj qj tð Þ; qi tð Þ
� �

qj tð ÞΔt

þmi 1�μi-j
� �

E Fi qi tð Þ; qj tð Þ
� �

qi tð Þ
h i

Δt

þmjμj-iE Fj qj tð Þ; qi tð Þ
� �

qj tð Þ
h i

Δt: ðA1:3Þ
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Fig. 5. Discovery versus spread in simulated populations. Both metapopulation (A) and lattice (B) simulations were initialized with wild type genotypes only. There are three
successively more deleterious mutants comprising a valley between the wild type genotype and a highly beneficial mutant (accessible from the third deleterious mutant). The
waiting time before the beneficial mutant reaches a given frequency is shown. As migration becomes more limited, the waiting time to the discovery of the beneficial mutant
decreases (asm decreases from 1, the 0.01% profile drops; as the dispersal neighborhood shrinks, the 0.01% profile drops). However, a greater degree of structure inhibits the spread
of these beneficial mutants (and thus the time to reach a substantial frequency of the beneficial mutant can increase under initial limitations to migration—see 1% and 50%
trajectories). Extremely limited migration decreases total population size, facilitating spread. Fixation does not occur as back mutation is allowed and the numbers of patches are
large. Points and shaded regions represent the mean7SEM of 24–36 (A) or 16 (B) replicate simulations using parameter values f ¼ 0:5, β¼ 0:2,
μW-M ¼ μM-M2 ¼ μM2-M3 ¼ μM3-M4 ¼ 0:01; μM4-M3 ¼ μM3-M2 ¼ μM2-M ¼ μM-W ¼ 0:01, δW ¼ 0:05, δM ¼ 0:1, δM2 ¼ 0:2, δM3 ¼ 0:4, δM4 ¼ 0:025. For (A), P ¼ 104. For (B), L¼ 200.
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where E is the expectation value over all patches. Thus, the
expected change in qi over our small interval of time is given by:

E Δqi
	 
¼ E Pþ

i �P�
i

	 

: ðA1:4Þ

For typographical convenience, we drop the explicit time
dependence in our notation for the terms and equations that
follow. We use the following notations

Ni ¼ E qi
	 


;

σ2i ¼ var qi
	 


;

C ¼ cov qi; qj
h i

¼ cov qj; qi
h i

;

and we have the following relations

E q2i
	 
¼N2

i þσ2i ; ðA1:5Þ

E qiqj
h i

¼NiNjþC: ðA1:6Þ
Using (A1.5), (A1.6), and our per capita birth rate of

Fi ni;nj
� �¼ f i�βi niþαijnj

� �
we can rewrite (A1.4) as follows:

E Δqi
	 

Δt

¼ �δiNiþ 1�μi-j
� �

f iNi�βi N2
i þσ2i

� �
þαij NiNjþC

� �� �n o
þμj-i f jNj�βj N2

j þσ2j

� �
þαjiðNiNjþCÞ

� �n o
: ðA1:7Þ

Taking the limit Δt-0, and factoring Ni from the second term
and Nj from the third term, we have

dNi

dt
¼ �δiNiþ 1�μi-j

� �
f i�βi Niþ

σ2i
Ni

� �
þαij Njþ

C
Ni

� �� � �
Ni

þμj-i f j�βj Njþ
σ2j
Nj

 !
þαji Niþ

C
Nj

� � !( )
Nj: ðA1:8Þ

The terms Niþσ2i =Ni and NjþC=Ni (and the two other similar
terms) are more approachable if we allow Njji to represent the

expected number of individuals of genotype j in the patch of a
randomly chosen individual of genotype i (rather than a randomly
chosen patch). Eq. (A1.6) can now be rewritten as
NiNjji ¼ E½qiqj� ¼NiNjþC, and therefore Njji ¼NjþC=Ni. Similarly,

Eq. (A1.5) yields Niji ¼Niþσ2i =Ni. Using this notation, (A1.8) can be

simplified to

dNi

dt
¼ �δi Niþ 1�μi-j

� �
Fi Niji;Njji
� �

Niþμj-i Fj Njjj;Nijj
� �

Nj:

ðA1:9Þ
From these equations we see that change in the first order

moment (the expected density of genotype i) depends on second
order moments (the variances and covariance of genotype den-
sities). Thus, we now derive the dynamical equations for the
change in these second order moments.

Variance dynamics

Again, we consider a very small interval of time, Δt. The
following holds:

Δq2i tð Þ ¼ q2i tþΔtð Þ�q2i tð Þ: ðA1:10Þ
Using (A1.1), (A1.2), (A1.3) and (A1.10), and again dropping the

explicit time dependence in our notation, we see that

Δq2i ¼ qi�1
� �2�q2i ¼ �2qiþ1 with probability P�

i ; and ðA1:11Þ

Δq2i ¼ qiþ1
� �2�q2i ¼ 2qiþ1 with probability Pþ

i : ðA1:12Þ

Thus, the expected change in q2i is given by:

E Δq2i
	 
¼ E 2qiþ1

� �
Pþ
i þ �2qiþ1

� �
P�
i

	 
 ðA1:13Þ
We have the following relations:

E q3i
	 
¼ Tiiiþ3Niσ

2
i þN3

i ; ðA1:14Þ

E q2i qj
h i

¼ Tiijþ2NiCþNjσ
2
i þN2

i Nj; ðA1:15Þ

where Tiii and Tiij are the central third-order moments. Because of
(A1.5), we also have

E½Δq2i �
Δt

¼ΔN2
i

Δt
þΔσ2i

Δt
ðA1:16Þ

Using (A1.5), (A1.6), (A1.14), (A1.15) and (A1.16), taking the limit
Δt-0 and using the chain rule (i.e., dN2

i
dt ¼ 2Ni

dNi
dt ), we have

dσ2i
dt

¼ dNi

dt
þ2 Ni�σ2i
� �

δi

þ 2 1�mið Þ 1�μi-j
� �

f iσ
2
i �βi T iiiþ2Niσ

2
i þαij T iijþNiCþNjσ

2
i

� �� � �

þ2 1�mj
� �

μj-i f jC�βj T jjiþ2NjCþαji T iijþNiCþNjσ
2
i

� �� � �
:

ðA1:17Þ
If we describe the third order moments exactly, we will find

ourselves needing to describe fourth order moments, which will in
turn require fifth order moments, and so on. Here we use our
moment closure technique.

Closing the moments

When migration is absolute (i.e., mi ¼mj ¼ 1), the random
variables qi and qj are independently Poisson distributed among
the patches with means equal to Ni and Nj, respectively (see
Neuhauser, 2002). For any independent Poisson-distributed ran-
dom variables, their third order moments can be described exactly
in terms of lower-order moments; the homogeneous third central
moment is the corresponding first-order moment, while all mixed
third central moments are zero:

Tiii ¼Ni

Tiij ¼ 0

By using these substitutions as approximations whenmi �mj � 1,
we obviate the need to describe higher order moments. This moment
closure technique is exact when mi ¼mj ¼ 1, and approximate when
mi �mj � 1.

Substituting our approximations for the third central moments
into Eq. (A1.17), we have

dσ2i
dt

¼ dNi

dt
þ2 Ni�σ2i
� �

δi

þ 2 1�mið Þ 1�μi-j
� �

f iσ
2
i �βi Niþ2Niσ

2
i þαij NiCþNjσ

2
i

� �� � �

þ2 1�mj
� �

μj-i f jC�βj 2NjCþαji NiCþNjσ
2
i

� �� � �
:

ðA1:18Þ

Covariance dynamics

Again, we consider a very small interval of time, Δt. The
following holds:

Δ qi tð Þqj tð Þ
� �

¼ qi tþΔtð Þqj tþΔtð Þ�qi tð Þqj tð Þ ðA1:19Þ
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Using, (A1.1), (A1.2), (A1.3) and (A1.16), and again dropping the
explicit time dependence in our notations, we see that

Δ qiqj
� �

¼ qi�1
� �

qj�qiqj ¼ �qj with probability P�
i ; and ðA1:20Þ

Δ qiqj
� �

¼ qiþ1
� �

qj�qiqj ¼ qj with probability Pþ
i : ðA1:21Þ

Thus, the expected change in the quantity qiqj is:

E Δ qiqj
� �h i

¼ E �qjP
�
i �qiP

�
j þqjP

þ
i þqiP

þ
j

h i
: ðA1:22Þ

From (A1.6), we have the following relation:

E½Δ qiqj
� �

�
Δt

¼Δ NiNj
� �
Δt

þΔC
Δt

: ðA1:23Þ

Using (A1.5), (A1.6), (A1.14), (A1.15) and (A1.23), taking the limit

Δt-0, and using the product rule (i.e., d NiNjð Þ
dt ¼Ni

dNj

dt þNj
dNi
dt ), we

have

dC
dt

¼ � δiþδj
� �

Cþ 1�mið Þ 1�μi-j
� �

f iC�βi T iijþ2NiC
� ���

þαij T jjiþNjCþNiσ
2
j

� ��
gþ 1�mj
� �

μj-i f jσ
2
j �βj T jjjþ2Njσ

2
j

� ��n

þαji T jjiþNjCþNiσ
2
j

� ��
gþ 1�mj
� �

1�μj-i
� �

f jC�βj T jjiþ2NjC
� �þαji T iijþNiCþNjσ

2
i

� �� �n o
þ 1�mið Þμi-j f iσ

2
i �βi T iiiþ2Niσ

2
i

� ���
þαij TiijþNiCþNjσ

2
i

� ��g:
Substituting our approximations for the third central moments

yields

dC
dt

¼ � δiþδj
� �

Cþ 1�mið Þ 1�μi-j
� �

f iC�βi 2NiCþαij NjCþNiσ
2
j

� �� �( )

þ 1�mj
� �

μj-i f jσ
2
j �βj Njþ2Njσ

2
j

� �
þαji NjCþNiσ

2
j

� �� �( )

þ 1�mj
� �

1�μj-i
� �

f jC�βj 2NjCþαji NiCþNjσ
2
i

� �� � �

þ 1�mið Þμi-j f iσ
2
i �βi Niþ2Niσ

2
i

� �þαij NiCþNjσ
2
i

� �� � �
:

ðA1:24Þ
With Eqs. (A1.8), (A1.18) and (A1.24), we have a closed system

of five differential equations describing the dynamics of NW , NM ,
σ2W , σ2M and C.

Appendix 2. Equilibrium densities

At equilibrium, dNW=dt ¼ dNM=dt ¼ 0. In this appendix, we
assume mW ¼mM ¼m, f W ¼ f M ¼ f , βW ¼ βM ¼ β, αWM ¼ αMW ¼ 1,
μW-M ¼ μ and μM-W ¼ 0. Using these assumptions and Eq. (A1.8),
the equilibrium value N̂W must satisfy the following:

0¼ �δWN̂W þ 1�μð Þ f N̂W �β N̂
2
W þ σ̂2W þN̂WN̂Mþ Ĉ

� �n o
: ðA2:1Þ

If we assume that m¼ 1, then qi and qj are independently
Poisson distributed, and therefore:

σ̂2W ¼ N̂W ; ðA2:2Þ

Ĉ ¼ 0: ðA2:3Þ
Using (A2.2) and (A2.3), the non-zero equilibrium in (A2.1) is

N̂W ¼ 1�μð Þ f �βð Þ�δW
1�μð Þβ �N̂M : ðA2:4Þ

We denote the total density at equilibrium T̂ ¼ N̂W þN̂M . So, we
have

T̂ ¼ 1�μð Þ f �βð Þ�δW
1�μð Þβ ; ðA2:5Þ

and

N̂W ¼ T̂�N̂M : ðA2:6Þ
Now we turn to the equilibrial density of the mutant genotype,

N̂M , again using (A1.8):

0¼ �δMN̂Mþ f N̂M�β N̂
2
Mþ σ̂2MþN̂MN̂W þ Ĉ

� �n o
þμ f N̂W �β N̂

2
W þ σ̂2W þN̂MN̂W þ Ĉ

� �n o
: ðA2:7Þ

If we are assuming m¼ 1, the resulting Poisson distribution
yields

σ̂2M ¼ N̂M ; ðA2:8Þ
Using (A2.3), (A2.6), and (A2.8), the non-zero mutant equili-

brium in (A2.7) is

N̂M ¼
�μT̂ f �βðT̂þ1Þ

� �
�δMþ 1�μð Þ f �βðT̂þ1Þ

� �: ðA2:9Þ

After substituting, using (A2.5), and simplifying, Eqs. (A2.4) and
(A2.9) simplify to the following:

N̂W ¼ 1�μð ÞδM�δW
� �

f �βð Þ 1�μð Þ�δW
� �

β δM�δWð Þ 1�μð Þ2
; ðA2:10Þ

N̂M ¼ μδW f �βð Þ 1�μð Þ�δW
� �
β δM�δWð Þ 1�μð Þ2

: ðA2:11Þ

In order for N̂W and N̂M to be positive, we must have the
following two conditions:

1�μð Þ f �βð Þ4δW ; ðA2:12Þ

1�μð ÞδM4δW : ðA2:13Þ
Note that (A2.13) is more stringent than the already assumed

δM4δW . In all of what follows, we will assume conditions (A2.12)
and (A2.13), except where explicitly mentioned. When μ¼ 0, Eqs.
(A2.10) and (A2.11) simplify to:

N̂W ¼ f �β�δW
β

; N̂M ¼ 0; ðA2:14Þ

Which gives a positive density of the wild type (by condition
(A2.12)) and no mutant density. When 1�μð ÞδM ¼ δW (i.e., right
where Eq. (A2.13) starts to be violated), Eqs. (A2.10) and (A2.11)
simplify to:

N̂W ¼ 0; N̂M ¼ f �β�δM
β

; ðA2:15Þ

Which gives a positive density of the mutant (by condition
(A2.12), replacing δW with 1�μð ÞδM) and no wild-type density.
Equilibria in (A2.14) and (A2.15) agree with single species equili-
bria from ecological models (Neuhauser, 2002; Pacala and Levin,
1997).

We let the fraction of mutants in the population be given by
ΦðtÞ, where

Φ tð Þ ¼ NMðtÞ
NW tð ÞþNMðtÞ

: ðA2:16Þ

Using Eqs. (A2.10) and (A2.11), the mutation–selection balance
under full migration is:

Φ̂¼ μδW
1�μð Þ δM�δWð Þ: ðA2:17Þ
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Note that if μ¼ 0, then Φ̂¼ 0. That is, when there is no supply
of new mutants through mutation, selection “wins” and no
mutants remain at equilibrium; this corresponds to the special
case of (A2.14). If μ¼ δM�δWð Þ=δM , then Φ̂¼ 1. That is, as
μ- δM�δWð Þ=δM , mutation “wins” by overwhelming selection
and only mutants remain at equilibrium; this corresponds to the
special case of (A2.15).

Appendix 3. The effect of structure on mutation–selection
balance

In order to explore the role of structure on the mutant
frequency, we look at

∂Φ
∂m

¼
∂NM
∂m NW � ∂NW

∂m NM

NW þNMð Þ2
: ðA3:1Þ

Here we will evaluate ∂Φ=∂m
��
m ¼ 1. In order to do so, we must

find ∂NW=∂m
��
m ¼ 1 and ∂NM=∂m

��
m ¼ 1, which we abbreviate with

∂NW=∂m
��
1 and ∂NM=∂m

��
1. To do this we differentiate (A1.8) with

respect to m and evaluate at the m¼ 1 equilibrium. We start with
Eq. (A1.8) where i¼W .

0¼ 1�μð Þ f �βð2N̂W þN̂MÞ
h i

�δW
n o∂NW

∂m

����
1
� β 1�μð ÞN̂W

n o∂NM

∂m

����
1

� β 1�μð Þ� �∂σ2W
∂m

����
1
� β 1�μð Þ� �∂C

∂m

����
1
: ðA3:2Þ

Again, we see that we will need to consider partial derivatives
of higher-order moments with respect to m to solve (A3.1). By
differentiating Eq. (A1.8) with i¼M, (A1.18) with i¼W , (A1.18)
with i¼M, and (A1.24), all with respect to m and making the
appropriate substitutions for when m¼ 1, we obtain other equal-
ities involving partial derivatives (similar to (A3.2)). This leads to
the following linear system:

A ∂
!

1 ¼ c!; ðA3:3Þ
where

∂
!

1 ¼

∂NW
∂m

��
1

∂NM
∂m

��
1

∂σ2W
∂m

���
1

∂σ2M
∂m

���
1

∂C
∂m

��
1

2
66666666664

3
77777777775
; and c!¼

0
0

N̂W ð1�μÞ f �β 1þ2N̂W þN̂M

� �n o
N̂M f �β 1þ2N̂Mþ 1þμð ÞN̂W

� �n o
N̂W μ f �β 1þ2N̂W

� �� �
�2βN̂M

n o

2
6666666664

3
7777777775
:

Solving system (A3.3) and using ∂NW=∂m
��
1 and ∂NM=∂m

��
1 for

Eq. (A3.1) gives the following:

∂Φ
∂m

����
m ¼ 1

¼ � βμ

ð1�μÞ2δM δM=δW
� �2�1
n o: ðA3:4Þ

We abbreviate ∂Φ=∂m
��
m ¼ 1 as ∂mΦ. From Eq. (A3.4), it is not

difficult to show that ∂ ∂mΦj j=∂β40, ∂ ∂mΦj j=∂μ40, ∂ ∂mΦj j=∂δMo0,
and ∂ ∂mΦj j=∂δW 40. That is, as the competition coefficient β, the
mutation rate μ, or the death rate of the wild type genotype
increase, the addition of structure to an unstructured system leads
to a greater increase in the mutant class frequency. As the death
rate of the mutant is increased, the addition of structure to an
unstructured system leads to a smaller increase in the mutant
class frequency.

Appendix 4. Gillespie algorithm

Our simulation is based on a Gillespie algorithm (Gillespie,
1977) that we coded in the Python 2.7 scripting language. The
Gillespie algorithm simulates a possible trajectory of a continuous
time stochastic system.

In our system of P connected patches, patches must be
initialized before simulating evolution. Unless otherwise indicated,
we seeded our patches with wild-type and mutant individuals by
repeatedly drawing from independent Poisson distributions
whose parameters are the full migration equilibria N̂W and N̂M

from (A2.10) and (A2.11), respectively. The initial population
defines update zero, for which the time variable t is also zero. As
the populations are seeded from their corresponding m¼ 1
equilibrium distributions, structure is introduced as any limited
migration simulation begins.

Evolution of the population occurs over “update” steps. First,
for update u each patch p receives four “weights”, corresponding
to the four possible events in that patch: a wild-type birth, a
mutant birth, a wild-type death, and a mutant death. Each event’s
weight is proportional to its rate. If we let the number of
genotypes W and M in a patch p at update step u be given by
nW ðu; pÞ and nMðu; pÞ, respectively, then the weights are defined as
follows:

k1 u; pð Þ ¼ f nW u; pð Þ�βnW u; pð Þ nW u; pð ÞþnM u; pð Þð Þ; ðA4:1Þ

k2 u; pð Þ ¼ f nM u; pð Þ�βnM u; pð Þ nW u; pð ÞþnM u; pð Þð Þ; ðA4:2Þ

k3 u; pð Þ ¼ δWnW u;pð Þ; ðA4:3Þ

k4 u; pð Þ ¼ δMnM u; pð Þ: ðA4:4Þ

The event that is attempted at update step u is either
a death, a birth with migration, or a birth without migration,
and the decision is made stochastically using the following
weights:

Kdeath uð Þ ¼
XP
p ¼ 1

k3 u; pð Þþ
XP
p ¼ 1

k4 u;pð Þ; ðA4:5Þ

Kbirth_mig uð Þ ¼m
XP
p ¼ 1

k1 u; pð Þþ
XP
p ¼ 1

k2 u; pð Þ
( )

; ðA4:6Þ

A¼

1�μð Þ f �βð2N̂W þN̂MÞ
n o

�δW �β 1�μð ÞN̂W �β 1�μð Þ 0 �β 1�μð Þ
�β 1þμð ÞN̂Mþμðf �2βN̂W Þ f �2βN̂M�β 1þμð ÞN̂W �δM �βμ �β �β 1þμð Þ

δW 0 �δW 0 0
0 δM 0 �δM 0
0 0 0 0 �δW �δM

2
66666664

3
77777775
;
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Kbirth_natal uð Þ ¼ ð1�mÞ
XP
p ¼ 1

k1 u; pð Þ
�� ��þ XP

p ¼ 1

k2 u; pð Þ
�� ��( )

: ðA4:7Þ

Time increment Δt is drawn from an exponential distribution
whose rate is equal to Kdeath uð ÞþKbirth_mig uð ÞþKbirth_natal uð Þ, and
time parameter t is incremented to tþΔt. For Fig. 2 and
Supplementary Fig. 1, the time increment’s exponential distribu-
tion rate is equal to k1þk2þk3þk4, which does not noticeably
affect the resulting time steps.

The Kbirth_natal uð Þ terms are summed using absolute values
due to potentially negative intra-patch birth rates. Since birth
rates decrease linearly with density, k1 u; pð Þ and k2 u; pð Þ may be
negative occasionally in particularly crowded patches. For
migrating events, the negative births reduce the mean birth
rate, which was never negative for the conditions of our simula-
tions. For non-migrating births, a negative birth event decre-
ments, rather than increments, the chosen genotype population
in a patch. Thus, for any patch r, if a non-migrating birth event
is chosen:

nW uþ1; rð Þ ¼ nW u; rð Þþsgnðk1 u; rð ÞÞ with probability

ð1�μÞ k1 u; rð Þ
�� ��

Kbirth_natalðuÞ
; ðA4:8Þ

nM uþ1; rð Þ ¼ nM u; rð Þþsgnðk2 u; rð ÞÞ with probability
k2 u; rð Þ
�� ��

Kbirth_natal uð Þþμ
k1 u; rð Þ
�� ��

Kbirth_natal uð Þ; ðA4:9Þ

If a migrating birth event is chosen (i.e., a migrant will ‘land’ on
a random patch):

nW uþ1; rð Þ ¼ nW u; rð Þþ1 with probability
1�μ

P

XP
p ¼ 1

k1 u; pð Þ
Kbirth_mig uð Þ;

ðA4:10Þ

nM uþ1; rð Þ ¼ nM u; rð Þþ1 with probability

1
P

XP
p ¼ 1

k2 u; pð Þ
Kbirth_mig uð Þþμ

XP
p ¼ 1

k1 u; pð Þ
Kbirth_mig uð Þ

( )
; ðA4:11Þ

If a death event is chosen:

nW uþ1; rð Þ ¼ nW u; rð Þ�1 with probability
k3 u; rð Þ
Kdeath uð Þ; ðA4:12Þ

nM uþ1; rð Þ ¼ nM u; rð Þ�1 with probability
k4 u; rð Þ
Kdeath uð Þ ðA4:13Þ

Simulations were run for 200,000 updates (for 1ZmZ0:95),
500,000 updates (for 0:954mZ0:7), or 1000,000 updates (for
0:74m40). Data was recorded every 5000 updates, and equili-
brial values represent a simulation’s average state over its final
10,000 updates.

Term Explanation Assumptions

W ; M wild type, mutant genotype labels
i, j arbitrary genotype indices
ni number of genotype i in a patch
f i intrinsic growth rate of genotype i f W ¼ f M ¼ f
βi competition parameter of genotype i βW ¼ βM ¼ β
αij competitive effect of genotype j on

genotype i
αWM ¼ αMW ¼ 1

δi death rate of genotype i δM4δW 40
μi-j mutation probability from genotype i to

j
μW-M ¼ μ,
μM-W ¼ 0

mi migration probability of genotype i mW ¼mM ¼m
Ni expected number of genotype i over all

patches

Nijj expected number of genotype i in a
patch of a randomly chosen genotype j

σ2i variance of genotype i over all patches
C covariance between genotypes i and j

over all patches
Φ fraction of mutants at mutation–

selection balance

Appendix B. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2015.05.003.
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