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When a more complex, functionally integrated entity emerges

from the association of simpler, initially independent entities, a

major evolutionary transition has occurred. Transitions that

result from the association of different species include the

evolution of the eukaryotic cell and some obligate mutualisms.

Recent studies are revolutionizing our understanding of how

these intimate interspecific associations come to be, revealing

how and to what extent each partner contributes to the

relationship, and how partners mediate conflict. Here, we

review work on the evolution of mutualistic symbioses in the

context of transitions in individuality and highlight how a better

mechanistic understanding of the ecological drivers of host-

symbiont interdependencies can help elucidate the

evolutionary path to symbiotic organismality.
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Introduction: Major transitions in evolution
and individuality
Throughout the tree of life, from prokaryotes to eukar-

yotes, from unicellular to multicellular growth forms, all

organisms share something in common. They are all made

of smaller entities that came together to function as a larger,

cohesive, and functionally integrated whole. Why do these

simpler forms of life associate in the first place, and why do

they renounce their individual autonomy to stay together?

In other words, why is life organized the way it is?

In the mid-90s, Maynard-Smith and Szathmary intro-

duced a new way to think about these questions by

proposing that increasing biological complexity can be

explained by a series of major transitions in evolution [1].

In each major transition, smaller, previously autonomous
www.sciencedirect.com 
(lower-level) biological entities come together to form a

new, more complex (higher-level) entity within which the

smaller entities show high cooperation and low conflict

(Figure 1). Central to this conceptual framework is the

idea of a link between the evolution of biological com-

plexity and the evolution of cooperation. Expanding on

this idea, Queller distinguished two kinds of major transi-

tions: ‘fraternal’ transitions involving similar, closely re-

lated units, and ‘egalitarian’ transitions involving

different, more distantly related units [2,3]. Following

these definitions, one can think of a multicellular organ-

ism — formed by the union of individuals from a single

unicellular species — as a ‘fraternal organism’, and of the

eukaryotic cell — formed by the union of individuals from

two or more unrelated unicellular species — as an ‘egali-

tarian organism’.

Since the idea of major transitions in evolution was

first introduced, great theoretical and empirical progress

has been made towards understanding within-species

transitions (see [4], and for recent reviews see e.g.

[5�,6]), in particular the evolution of multicellularity

[7,8,9,10,11,12,13,14] and of eusociality [15,16]. Egalitar-

ian transitions, however, have received less attention,

partly due to the empirical difficulty of identifying and

studying biological associations of functionally integrat-

ed, interdependent species — or even agreeing on what

constitutes such an association [17,18]. This is, however,

starting to change due to the development of novel

approaches that are revealing some of the mechanisms

behind the formation and maintenance of such intimate

partnerships [19,20]. In this review, we focus on between-

species transitions and discuss recent work on mutualistic

symbioses in the light of major transitions in individuality.

Coming together: The origins of between-
species associations
Mutualisms are prevalent in nature and found in all

kingdoms of life, usually arising from the exchange of

nutrients and/or services [21] (Table 1). In many of these

associations the partners are able to live independently,

but in others, one or more partners are so dependent on

the association that they can no longer live outside of it.

Because conflict inevitably arises when multiple species

share a common environment, either due to passive

competition over shared limiting resources such as nutri-

ents or space (exploitative competition) or else because

one or more species harms the others (interference com-

petition), any theory of the origin of mutualism must

answer two questions. First, how do species mediate

conflict and maintain cooperation instead of pursuing
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Figure 1
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Common features and steps to a major egalitarian (between-species) transition. Here we illustrate a transition between a larger partner (e.g.

host) and a smaller partner (e.g. symbiont). While initially autonomous entities with high potential conflict and low cooperation, the two species

ultimately form a symbiotic organism with high cooperation and low conflict, as well as a high degree of mutual dependency.
their selfish interests (i.e. cheat)? Second, what favours

the evolution of between-species dependencies?

Here we approach these questions by focusing on inter-

actions involving a larger partner (a host) and a smaller

symbiont. We classify host-symbiont associations on two

axes (Figure 2): the symbiont’s mode of transmission (from

horizontal to vertical) and the degree of interdependency
Table 1

Examples of host-bacterial symbiont associations illustrating the dive

Host-symbiont Mechanism of interaction

(i.e. resources/services

provided)

Symbio

transmis

mode

Aphid-Buchnera

aphidicola

Nutritional

(Buchnera provides essential

amino acids to the aphid in

return for nutrients)

Vertical 

Pea aphid-Regiella

insecticola

Defensive mutualism

(symbiont protects its host

against fungal pathogens

or parasitoids)

Vertical (but

occasionally

horizontal)

Dictyostelium

discoideum-Burkholderia

Defensive mutualism Mixed 

Tubeworm Riftia

pachyptila-endosymbiont

Endoriftia

Nutritional

(host provides H2S and O2 to

symbiont in return for fixed

organic carbon)

Horizontal w

evidence for

release of sy

upon host d

Legume-Rhizobium Nutritional

(legume provides carbon to

rhizobia in exchange for

nitrogen)

Horizontal 

Bobtail squid Euprymna

scolopes - bacterium

Vibrio fischeri

Protection- indirect via

camouflage

(vibrio emits light that

protects the squid from

potential predators at night in

return for a nutrient-rich host

environment)

Horizontal 

Notes:
a Horizontal transmission: symbionts are environmentally acquired. Vertical 

mode: combination of both vertical and horizontal transmission.
b We define ‘obligate’ as not being able to survive independently.
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for nutrients and/or services (from facultative to mutually

obligate). By using these two interconnected continuum

axes, we aim to distinguish between the symbiont’s de-

pendency for dispersal to a new host (H-V continuum) and

interdependency for reproduction, growth, and survival (F-

O continuum). As an association moves up and to the right

in Figure 2, it becomes more like a single organism — i.e.

its degree of ‘symbiotic organismality’ increases — until
rsity of modes of transmission and dependencies

nt

sion
a

Symbiont

localization

Degree of

dependencyb
References

Bacteriocytes

(obligate intracellular)

Mutually dependent [42�,82,83]

Hemolymph,

sheath cells and

secondary

bacteriocytes

Symbiont obligate to

host (facultative

secondary symbiont)

[76,84,85,86]

Spores (intracellular)

or sori (extracellular)

Both autonomous

(facultative)

[22�,87,88]

ith

mbionts

eath

Bacteriocytes Host obligate to

symbiont

[89]

Nodules Both autonomous

(facultative)

[32,69]

Crypts of the

light organ

Both autonomous

(facultative)

[40]

transmission: symbionts are maternally transmitted. Mixed transmission

www.sciencedirect.com
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Figure 2
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Potential paths to a major transition between species. The x axis represents the degree of dependency for nutrients and services across the

facultative — obligate continuum, and is thus mainly concerned with dependence for reproduction, growth, and survival. The y axis represents the

mode of symbiont transmission ranging from strict horizontal transmission to strict vertical transmission, and thus represents the degree of

symbiont dependency for dispersal to a new host. When both modes of transmission are present, we use the term ‘mixed’. The light grey box

shows the free-living state (i.e. before association with host) characterized by a lack of, or a purely accidental interaction. The dashed arrows

represent potential trajectories to reach a symbiotic organismal state when starting from a purely free-living state. As an association moves up and

to the right, its degree of ‘symbiotic organismality’ increases, and a major evolutionary transition, characterized by strict vertical transmission and

mutual dependency, occurs. Here, we consider that one species is larger (host) and the other species is smaller (symbiont).
ultimately a major evolutionary transition, characterized by

strict vertical transmission and mutual dependency, occurs

(e.g. the eukaryotic cell). Prior to such a transition, whether

the interaction is parasitic, commensal or mutualistic is a

function of the balance between the net costs and benefits

of association, which is contingent on the environment

[22�,23��,24], and associations may freely shift between

these states as the partners adapt to each other’s presence.

Guided by these two main axes, we next discuss some of

the opportunities and challenges faced by associations on

the road towards symbiotic organismality, with particular

emphasis on the mechanisms mediating conflict between

partners and driving host-symbiont interdependencies.

From warfare to welfare: mechanisms
mediating conflict and promoting cooperation
Key to maintaining a stable relationship is keeping con-

flict low and cooperation high [25]. Mechanisms of con-

flict mediation are particularly important for associations

involving different species because, unlike in fraternal

associations, partners cannot rely on high relatedness to

minimize the evolutionary impact of within-individual
www.sciencedirect.com 
conflict and align their reproductive interests (e.g. by

undergoing a single-cell bottleneck during reproduction

[9]). Here we discuss strategies that can mitigate conflict

during egalitarian transitions (Figure 3).

Partner-fidelity feedback, partner choice and sanctions

Organisms that do not contribute (or contribute less) to a

costly cooperative phenotype, but nevertheless reap the

same benefits, should be favoured by natural selection.

Given selection for cheating, how are mutualisms main-

tained? A number of phenotypic feedback mechanisms

(Figure 3) have been proposed to explain how cheating

can be prevented or limited in multispecies associations

[26,27,28], including partner choice [29,30,31], partner

sanctions [30,31,32,33,34] and partner-fidelity feedback

[35,36].

Evidence for partner choice and post-infection partner

sanctions has been found, for instance, in the facultative

symbiosis between legumes and the horizontally trans-

mitted rhizobia bacteria [30,31,32]. Rhizobia commonly

live in the soil, but often colonize the root nodules of
Current Opinion in Microbiology 2016, 31:191–198
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Figure 3
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Mechanisms mediating conflict between species and stabilizing mutualisms and that may be key to the formation and maintenance of a symbiotic

organism. Mutual dependence, phenotypic feedbacks, and compartmentalization ensure benefits from association and keep conflict low. Vertical

transmission ensures that partners have a shared reproductive fate. EAA: essential amino acids. The green and yellow arrows show the benefits

provided by a species to another species.
legumes. Within the host nodules, symbiotic rhizobia fix

nitrogen and provide ammonia back to their host in

exchange for carbon sources and oxygen. But nitrogen

fixation is costly and so rhizobia strains that fix less

nitrogen can invest more energy into their own growth

and reproduction. To prevent rhizobial cheats from tak-

ing over and disrupting the mutualism, the plant has

evolved mechanisms to reduce infection by less beneficial

symbionts (partner choice) and selectively direct more

resources to root nodules colonized by beneficial rhizobia

and fewer resources to less efficient nodules (partner

sanctions) (Table 1) [32]. While partner choice and sanc-

tions commonly rely on the idea that a partner’s response

is conditional on the behaviour of its partner [27], partner-

fidelity feedback does not rely on such conditional re-

sponse but instead occurs when there is a positive corre-

lation between partners’ fitness so that the benefits

provided to a partner feed back as returned benefits to

the actor, as occurs for instance in the association between

eukaryotes and their mitochondria [26].

Partner choice and partner sanctions are more important

when hosts need to re-acquire beneficial symbionts each

generation from the environment, a process which

requires the ability to either distinguish beneficial sym-

bionts from a diverse pool of organisms or else sanction

less beneficial or harmful symbionts. In contrast, partner-

fidelity feedback is expected to play a major role in

stabilizing mutualisms where symbionts are transmitted
Current Opinion in Microbiology 2016, 31:191–198 
vertically [5�,19,26]. This occurs because host and sym-

biont fitness are intimately intertwined, and so there is a

direct negative feedback from harming the other partner

[37,38]. As a consequence, partner-fidelity feedback is

commonly characteristic of older, obligate partnerships

with a deep history of co-evolution [5�,19,26].

Privatizing beneficial partners via compartmentalization

The ability to enhance host control and ensure partner

fidelity is greatly increased in cases where symbionts reside

in specialized host compartments, and more so when they

are housed intracellularly [39] (Figure 3, Table 1). When

symbionts are transmitted horizontally, hosts almost inevi-

tably acquire genetically different partners, resulting in a

greater potential for conflict. The partitioning of symbionts

into multiple compartments (e.g. nitrogen-fixing rhizobia

within nodules) results in the physical separation of sym-

bionts, and this type of compartmentalization improves the

host ability to reward beneficial symbionts or sanction

harmful intruders. Such spatial separation can also be

achieved, for instance, with structured crypts as seen in

the light organ of the bobtail squid [40] and in the midgut of

many insects [41]. Another, perhaps more extreme, exam-

ple of symbiont privatization occurs when symbionts live in

specialized host cells. While in some cases they can be

transferred horizontally, there are also cases of vertical

transmission. For instance, the obligate endosymbiont

(Buchnera) of aphids resides inside specialized cells

known as bacteriocytes (Table 1). With this intracellular
www.sciencedirect.com
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compartmentalization, the host is able to control the density

of its symbiont, minimizing within-host conflict over

resources. Because bacteriocytes are maternally transmit-

ted, the host not only controls its symbiont growth, but also

its symbiont’s reproductive fate [42�]. Such symbiont pri-

vatization enforced by physical boundaries that are retained

across generations of the host maximizes partner fidelity, as

partners do not need to associate de novo each generation,

and hence promotes the return of fitness benefits via

partner-fidelity feedback.

Sink or swim together: ecological and
mechanistic drivers of interdependencies
Gene loss drives functional dependency

An egalitarian transition only occurs when partners are

interdependent as it is key to limit conflict between

partners [2]. Evidence for a link between genome reduc-

tion and symbiont lifestyle is accumulating, indicating that

the smallest genomes usually belong to vertically transmit-

ted, intracellular obligate symbionts that have evolved

from bacteria that were once free-living [43]. But why

and how, in the first place, would an organism give up

its autonomy and become dependent on other organisms?

The loss of essential genes — driven by natural selection

and/or genetic drift — is common in nature but often goes

unnoticed because the functions that are lost are com-

pensated for by ecological partners [44,45,46,47]. Many

genes yield functions whose products are ‘leaky’, or

difficult to privatize, allowing some organisms to lose

these genes as long as they are in a community where

other organisms have retained them. In diverse, free-

living communities, this adaptive gene loss via a ‘Black

Queen’ process can yield a variety of novel mutualistic

interactions, which could potentially seed the develop-

ment of more specific and intimate mutualisms [46,47].

Symbionts restricted to living and reproducing inside their

host, such as vertically transmitted endosymbionts, also

experience positive selection to lose genes whose products

are provided by their host or other symbionts

[48,49,50,51,52,53��,54], but these organisms can also

evolve smaller genomes through random genetic drift.

Because of their significantly reduced effective population

size, the ability of natural selection to prevent the accumu-

lation of neutral and deleterious mutations is greatly weak-

ened, and this fact coupled with isolation from horizontal

gene transfer (HGT) from other species leads to steady

genome reduction [55]. This process, called Muller’s ratch-

et [56], can lead to extreme dependency on the part of the

symbiont even in the absence of a selective advantage for

becoming dependent. Because Muller’s ratchet is a nearly

inevitable side effect of vertical transmission with a tight

bottleneck, it is a major engine for pushing associations

towards obligate interaction. As a consequence of such

physical and functional integration, harm to the host

generates a negative feedback on the symbiont’s fitness
www.sciencedirect.com 
(partner-fidelity feedback), and so vertically-transmitted

obligate symbionts are typically expected to be beneficial

to their host [19,37]. There are exceptions, however, as

illustrated by many examples of parasitic Wolbachia strains

that are vertically transmitted in insect populations [57,58].

Interplay between gene transfer and gene loss in the

evolution of interdependencies

The importance of the interplay between gene transfer

and gene loss for driving egalitarian transitions is evident

in the evolution of the eukaryotic cell [59]. Genes that

initially belonged to the mitochondrial endosymbiont

were transferred to the host’s nucleus [60,61,62]. Because

the products of those genes were coming back to the

mitochondria, the mitochondrial genes became redun-

dant and, as a result of such redundancy and isolation from

HGT in a very small population, they were ultimately lost

from the mitochondrial genome [63]. Such gene transfer

and loss shifted genetic control — from the mitochondria

to the host — which further aligned the interests of the

two partners, and is likely to have been crucial to the

evolutionary success of the eukaryotic cell.

Similar processes are ongoing within insect-microbe sym-

bioses in the modern world, with evidence for horizontal

transfer of functional genes from non-symbiotic bacteria

to the host genome [53��,64�], from symbionts to other

symbionts [65], and also, though rare, the direct transfer of

symbiotic genes to the genome of the host [64�], which is

one of the signatures of the evolution of organelles [42�].
For instance, the endosymbiont wCle Wolbachia provides

its insect host with B vitamins, a nutritional capability that

was made possible by the acquisition of a nutritional gene

from a coinfecting endosymbiont [65].

While the studies discussed above focus on the role of gene

loss and transfer in driving associations towards obligacy,

genome expansion via gene duplication and HGT can also

play an important role in the evolution of symbioses, in

particular in the transition from environmental to a symbi-

otic lifestyle [66]. A notable example is the evolution of

symbiotic nitrogen-fixing rhizobia from non-symbiotic

strains by the acquisition of chromosomal symbiotic genes

involved in nodulation and nitrogen fixation [67].

Conclusions and future directions
Most intimate, obligate symbioses are the result of an

evolutionary journey where partners — once autonomous

organisms — forwent the pursuit of their own selfish

interests and individual autonomy to become a single

symbiotic organism. Here we suggest that separating a

symbiont’s dependency for dispersal into new hosts (sym-

biont mode of transmission) and interdependency for

reproduction, growth and survival (dependency for nutri-

ents/services) into two continuum axes can help us better

understand and predict the evolutionary path to symbiotic

organismality (dashed arrows in Figure 2). In particular,
Current Opinion in Microbiology 2016, 31:191–198
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this approach highlights three major questions. First, does

strict vertical transmission evolve before or after mutual

dependency for nutrients/services? Second, are all symbi-

otic relationships on the path towards obligacy? Third,

once a symbiont’s dependency for dispersal or dependency

for nutrients/services has occurred, how likely is reversal to

an autonomous state? For instance, phylogenetic analyses

suggest that the reversal of bacterial mutualisms to a

parasitic or free-living state is rare [19,68�] and legume-

rhizobia mutualisms have remained facultative despite

some of these partnerships being very ancient [69]. Future

work might address whether and how mechanistic or

ecological constraints can be preventing some of these

transitions from occurring.

A valuable tool to examine transitions in symbioses is

phylogenetic analysis, which provides information about

when the transitions might have occurred and the rates at

which symbionts are gained and/or lost

[19,41,53��,61,68�,69,70,71,72]. Experimental evolution

has also proven useful in testing the conditions that favour

shifts along the conflict-mutualism and horizontal-vertical

continua, and there is now a diverse range of symbiosis

model systems available to test further these ideas (e.g.

the Dictyostelium farming symbiosis [22�], algal photosyn-

thetic symbioses [23��,73], plant-bacteria symbioses [74],

and insect-bacterial nutritional [65,75] and defensive [76]

symbioses). Coupled together, these two approaches offer

powerful complementary frameworks for exploring the

origins, evolution, and breakdown of symbioses.

Another question is which partner controls vertical trans-

mission? Do hosts enslave their symbionts by enforcing

strict vertical transmission, or do symbionts force their way

into their hosts’ reproductive system to ensure their trans-

mission to the next generation? There is growing evidence

that both hosts and symbionts have specialized mecha-

nisms that enable them to drive vertical transmission

[77,78]. Symbiont-driven vertical transmission has been

suggested, for instance, in the mutualistic endosymbiont S.
glossinidius which invades its host’s bacteriocytes using a

type III secretion system, a strategy commonly used by

intracellular pathogens to invade host cells [79]. In contrast,

evidence for host-driven vertical transmission has been

found in the pea aphid A. pisum which is able to selectively

transfer its obligate symbiont Buchnera via a mechanism of

exo-/endocytotic transport [80]. Which strategy is more

prevalent is an open question, and more work is needed to

unravel the molecular mechanisms underpinning both

host-driven and symbiont-driven transmission modes.

A major challenge with studying obligate symbioses is to

determine who depends on whom and how, as well as to

measure the net costs and benefits of association. This

becomes even more challenging when studying symbioses

that involve more than two species, as indirect obligacies

can arise (e.g. symbiont A depends on symbiont B that
Current Opinion in Microbiology 2016, 31:191–198 
depends on the host, and thus symbiont A depends indi-

rectly on the host). Although our discussion in this review

has focused on interactions between a host and a single

symbiont, our two-axis approach can also be used in some

cases to explore the route to symbiotic organismality when

multiple symbionts are involved. When dependencies are

hierarchical (i.e., A lives within B that lives within C), such

as in the tripartite, three-way nested mealybug mutualism

[53��], our approach works by separately focusing on the

different host-symbiont levels. But when dependencies

are non-hierarchical (e.g. symbionts A and B both living

within C), symbionts may directly help or harm each other,

which brings in an additional layer of complexity [81]. In

such cases, our approach can still be used in the same way as

long as there is a temporal separation between major

transition events. This occurs, for instance, when the host

acquires symbionts sequentially, and illustrates a case

where several major transitions within a single host may

have occurred, ultimately leading to a symbiotic organism

composed of more than two former organisms. One can also

envision a more complex case, where a consortium of

symbionts progresses towards symbiotic organismality as

a cohort, and it is this possibility that is the focus of ongoing

research on the ‘hologenome theory of evolution’ [17].

Developing a unified theory of mutualism that integrates

the mechanistic, ecological and evolutionary drivers of

host-symbiont interdependencies is an important next step

to obtain a more complete and general picture of how

symbiotic organismality can be achieved.
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