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The Price equation is recognized as a general statistical description of evolutionary change with the potential to represent diverse

processes. Here we present a new structurally symmetric equation for change that allows for arbitrary causal connectivity between

ancestors and descendants, accounts for previously unaddressed processes (such as migration), and yields the Price equation as a

special case.
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The “Price equation” provides an abstract statistical decompo-
sition of evolutionary change (Price 1970, 1972) and has been
applied to a diverse array of phenomena (Wade 1985; Queller
1992; Frank 1995; Page and Nowak 2002; Henrich 2004; Rice
2004; Fox 2006; Okasha 2006). Despite its range of application,
the Price equation does make certain limiting assumptions about
the causal connectivity between the entities described. Here we
explore a new equation for change based on less restrictive as-
sumptions. The resulting equation is structurally symmetric and
has the capacity to represent phenomena that cannot be accounted
for by a standard Price equation.

Consider a population whose state can be described at two
different points in time, ta and td, the ancestral and descendant time
points, respectively (we use superscripts to indicate ancestors and
subscripts to indicate descendants in all that follows). Let there
be na entities at ta and nd entities at td. Let Ci

j be an indicator
variable for connection between ancestral entity i and descendant
entity j. So

Ci
j =






1 if ancestral entity i connects to descendant entity j
0 if ancestral entity i does not connect to descendant

entity j

Thus, ancestral entity i connects to a total of Ci
∗ =

∑nd
j=1 Ci

j

descendant entities, and descendant entity j connects to C∗
j =

∑na

i=1 Ci
j ancestral entities. Let Ca

∗ and C∗
d be variables repre-

senting the total number of connections for an ancestor and the
total number of connections for a descendant, respectively. The
total number of connections in the population is C∗

∗ =
∑na

i=1 Ci
∗ =∑nd

j=1 C∗
j =

∑na

i=1

∑nd
j=1 Ci

j . The only assumption regarding con-
nectivity required by our analysis is that there should be at least
one connection between the ancestral and descendant ensembles.
The Price equation, in contrast, only permits unconnected mem-
bers in the ancestral population.

We are interested in tracking change in some property of the
entities within our population over time. Let the value of some
measurable character of ancestral entity i be Xi and that of descen-
dant entity j be Xj. Again, let Xa and Xd be variables representing
ancestral and descendant character, respectively. We quantify evo-
lution by the change in average character value between ta and td,
namely !X̄ = Xd − Xa =

∑nd
j=1 (X j/nd ) −

∑na

i=1 (Xi
/

na).
Following Price’s (1972) lead, we identify “ave” and “cov”

as the average and covariance functions at the level of the entire
population (as opposed to random samples from the population).
Using the variables and parameters defined above, we can then de-
rive the following equation for character change (see Appendix 1):

!X̄ = cov(Ca
∗ , Xa) + ave[Ca

∗ (!X )a] − (nd/na)cov(C∗
d , Xd )

C∗
∗/na

,

(1)
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Figure 1. Evolutionary change through covariance. (A) Individuals with X = 0 (open circles) present at ta survive until td (or, alterna-
tively, asexually produce a single identical offspring). However, an individual with X = 1 (filled circle) migrates into the population at td .
Evolutionary change is wholly accounted for by the third term of equation (1) (!X̄ = 1/3 = −(nd/C ∗

∗ )cov(C ∗
d, Xd)). (B) Reproduction in indi-

viduals with X = 0 (open circles) is sexual, whereas individuals with X = 1 (filled circles) reproduce asexually. Because each parent has two
offspring and each offspring is identical to its parent, the first two terms of (1) are zero (cov(C a

∗ , Xa) = ave[C a
∗ (!X)a] = 0). The third term,

measuring the covariance between offspring phenotype and number of parents, accounts for change (!X̄ = 1/6 = −(nd/C ∗
∗ )cov(C ∗

d, Xd)).
(C) This population is identical to that shown in part (A), with the time points ta and td reversed. Viability selection (the filled circle
perishes) is the mirror image of migration ((na/C ∗

∗ )cov(C a
∗ , Xa) from this population is equal to (nd/C ∗

∗ )cov(C ∗
d, Xd) from the population

in [A]). (D) This population is identical to that shown in part (B), again with ta and td reversed. Fecundity selection is the mirror image
of a mix of reproductive modes ((na/C ∗

∗ )cov(C a
∗ , Xa) from this population is equal to (nd/C ∗

∗ )cov(C ∗
d, Xd) from the population in [B]).

The quantity (!X )i =
∑nd

j=1 Ci
j (X j −Xi )
Ci

∗
is the average deviation in

character between ancestral entity i and its connected descendant
entities. Again, (!X )a is the variable of which (!X )i is an in-
stance. Note that (!X )a is undefined when the ancestral entity
is unconnected (i.e., Ca

∗ = 0), but in such cases we let Ca
∗ (!X )a

be zero. Finally, C∗
∗/na is the average number of connections per

ancestor.
The first two terms in the numerator of the right-hand side of

equation (1) map to the terms found in a standard Price equation.
Connections between ancestral and descendant entities are usually
then interpreted as representing relations of reproduction. The first
term is a covariance between the character value of an ancestor
and the number of descendants to which it is connected. If Ca

∗ is
taken to be a measure of reproductive output, then cov(Ca

∗ , Xa) is
the covariance between ancestral character and (realized) fitness.
The second term measures the overall tendency of an ancestor’s
descendants to diverge from it in character. The third term in the
numerator, which is not part of a standard Price equation, is like a
mirror image of the first term. It measures the covariance between
descendant character and the number of ancestors to which the
descendant is connected.

The first two terms are often seen as giving a complete de-
composition of evolutionary change. However, change is consis-
tent with zero values for Price’s two terms. Two simple phenom-
ena can be used to illustrate the role of the third term. One is
migration into the population from outside (Fig. 1A). A migrant

is, in the context of our analysis, a descendant without an ancestor.
When some individuals in the descendant ensemble are migrants
and some are not, and the migrants differ in average character from
the locals, cov(C∗

d , Xd ) will be nonzero. The other phenomenon
is a mixture of biparental and uniparental reproduction (Fig. 1B).
Then, again, individuals will differ in their number of parents, and
if those with more or fewer parents also differ in character from
the others, cov(C∗

d , Xd ) will be nonzero. Within a standard Price
equation framework, mixes of biparental and uniparental repro-
duction can be accommodated by giving parents only “half credit”
for sexually produced offspring. Migration might be represented
by simply adding a new term to express the contribution to the
descendant population made by any immigrants. In our analysis,
in contrast, these phenomena are treated in a unified way, as ex-
amples of processes by which descendants can differ in ancestor
number.

We have presented the analysis so far in terms of a one-
way flow of influence that matches the direction of the arrows in
Figure 1, but the analysis can also be reversed. As there are no
constraints on the pattern of connectivity (other than the presence
of one connection in the system), and unconnected individuals can
appear in both the ancestral and descendant ensembles, an analysis
using equation (1) could describe change from the descendant
ensemble to the ancestral ensemble. In fact, the treatment can be
made still more symmetrical. Equation (1), like standard forms of
the Price equation, does its accounting from the “ancestral point
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of view.” If we instead consider relative measures of ancestral and
descendant connectedness, given by C̃a

∗ = Ca
∗/(C∗

∗/na) and C̃∗
d =

C∗
d /(C∗

∗/nd ) respectively, it is possible to derive a “connection-
based” equation (see Appendix 2)

!X̄ = cov(C̃a
∗ , Xa) + ave((!X )a

d ) − cov(C̃∗
d , Xd ). (2)

Here (!X )i
j = Ci

j (Xj − Xi) and the second term in (2) is the
average change in character from an ancestor to a descendant
across a connection. Equation (2) replaces an ancestral perspective
of analysis with a purely connection-based perspective.

The symmetry in equations (1) and (2) gives rise to some
novel analogies. Migration of an individual into the descendant
ensemble is analogous to a failure to exert influence (a failure to
survive or reproduce) on the part of an ancestor when the tempo-
ral perspective is flipped (compare Figs. 1A and 1C). Mixtures of
biparental reproduction with uniparental reproduction map onto
differences in fecundity (compare Figs. 1B and 1D). Variation
in parent number corresponds, when the analysis is reversed, to
variation in offspring number. More generally, when the temporal
perspective is inverted, the two covariance terms exchange roles;
the “differential fitness” term becomes the “differential conver-
gence” term, and vice versa. This symmetry illustrates that phe-
nomena that were previously unaccounted for, such as migration,
are actually the mirror images of phenomena, such as selection,
that are familiar to the standard Price equation.

Our framework decomposes evolutionary change into three
factors that represent different forms of causal connectivity be-
tween ancestral and descendant ensembles. First, there is the re-
lationship between ancestral character and connectedness to de-
scendents. This is captured by the first covariance term in equation
(2), which measures the contribution of “differential divergence”
to evolution. Second, we have the change in character from an-
cestor to descendant across a connection. This is captured by the
second term in equation (2), which measures the contribution of
“transformation” to evolution. Third, there is the relationship be-
tween descendant character and connectedness to ancestors. This
is captured by the third term in equation (2), which measures
the contribution of “differential convergence” to evolution. It is
possible, as illustrated in Figure 2, for the same ancestral ensem-
ble to give rise to the same descendant ensemble via different
patterns of causal connection, each captured by different terms
in our equation. Figure 2A shows evolution via differential di-
vergence (fecundity selection); Figure 2B illustrates evolution via
transformation (biased mutation); and Figure 2C, D depicts evolu-
tion via differential convergence (migration and mixed sexuality,
respectively). This figure shows connection to be a linchpin in our
framework.

As is the case with the Price equation, we have made very
few assumptions about the entities themselves. The entities could

be genes, individuals, groups, or species, to name just a few pos-
sibilities. Biological systems are often organized hierarchically
with subentities embedded within entities (e.g., individuals in
social groups) and we may be interested in describing evolu-
tionary change occurring simultaneously at different levels. The
usefulness of the Price equation derives in part from its recursive
structure, which allows it to be applied to hierarchically structured
systems (Frank 1998). Price’s average term can be decomposed
into a lower-level covariance term and a lower-level average term.
Our equations are also recursive, but the average term in each case
breaks down into three lower-level terms, each corresponding to
the terms described above (see Appendix 3).

We also make few assumptions about the nature of a “con-
nection” between entities. Above we have discussed connec-
tions mostly as parent–offspring relations. However, a con-
nection can also represent the simple persistence of an entity
(an entity at time ta “connects” to itself at time td). Alter-
natively, a connection may represent other forms of influence
between entities such as material or information flow. Conse-
quently, the framework can also represent ecological change,
cultural evolution, and many other processes. As with the stan-
dard Price equation, there is a cost associated with this high
degree of generality. Our equations only represent change over
a single time-step, and cannot (without further assumptions
about the system) be iterated over many time-steps. (See Frank
1998 for a discussion of “dynamic sufficiency” and the Price
equation.)

We now outline some examples of phenomena that our frame-
work may shed new light on. The first example involves a different
way to represent the intrinsic cost of sex. In Figure 1B, both asex-
ual and sexual ancestors have two offspring each. Further, every
offspring individual perfectly resembles its parent. Thus, the first
two terms of equation (2) are zero. If sexual individuals have a
character value of zero, and asexual individuals have a character
value of one (as in Fig. 1B), then the frequencies of sexual in-
dividuals at times ta and td are sa = 1 − Xa and sd = 1 − Xd ,
respectively. The frequency change of sexual individuals is
sd − sa = −!X̄ = cov(C̃∗

d , Xd ) = −Xa(1 − Xa)/
(
1 + Xa

)
in a

case like Figure 1B. The covariance between the sexual character
of the descendant and its relative number of parents measures the
change in frequency of sexual individuals. This covariance is neg-
ative because all sexual offspring (with Xd = 0) have two parents
(with C∗

d = 2), whereas all asexual offspring (with Xd = 1) have
a single parent (with C∗

d = 1). Thus, we see that this covariance
gauges the decrease in the frequency of sexual reproduction. Sex
is costly because sexual offspring require two parents, whereas
asexual offspring require only one parent. The cost of sex, un-
derstood in this way, also has a cultural analogue. If one cultural
practice can only be copied from multiple individuals functioning
as a unit, and a rival practice can be learned by observing fewer
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Figure 2. Statistical dependence on the pattern of connection. The same evolutionary outcome is shown four times. However, by
changing the connections, evolution is explained solely by (A) fecundity selection, (B) biased mutation, (C) migration, or (D) mixed modes
of reproduction. Distinct statistical terms from equation (2) wholly account for evolution in each case (shown to the right of each evolving
population).

individuals, then the former practice is intrinsically costly in an
evolutionary sense.

A second example involves an application outside of evo-
lutionary biology. Fox (2006) used the Price equation to gauge
how the loss of species affects change in ecosystem function
between two sites (separated in space, time, or both). In the Sup-
porting information, we use equation (1) to partition the effects
of both loss and gain of species on ecosystem function. Once
again, we discover structural symmetry in this new context. Of
course, a framework that incorporates species gain will be espe-
cially relevant to ecosystem restoration and the study of invasive
species.

Thus, our equations find applications both inside and outside
evolutionary biology. The new covariance term not only makes

certain symmetries clear, but also enlarges the set of phenomena
covered by a simple statistical equation. Migration is clearly an
important source of change in biological populations, whether
considering a collection of conspecifics or a multispecies com-
munity assemblage. Additionally, our equations draw associations
between ostensibly distinct processes. In the same way that vi-
ability selection and fecundity selection are grouped together as
“selection processes” by the first covariance term, the third co-
variance term unites migration and mixed reproductive modes as
kindred processes of differential convergence. By accommodat-
ing arbitrary patterns of connection between evolving entities, our
framework extends the range of applicability of Price-style statis-
tical partitions to cover new cases of genetic evolution, ecological
transformation, and cultural change.
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Appendix 1
DERIVATION OF EQUATION (1)

In this Appendix, we first generate Price’s terms within
our “connectivist” framework. Along the way, we produce
something resembling the Price equation, but with an ex-
tra term. The statistical resolution of this extra term yields
equation (1).

Using the parameters and variables defined above, the fol-
lowing clearly holds:

0 =
na∑

i=1

Ci
∗
(
Xi − Xa

)/
na −

na∑

i=1

Ci
∗
(
Xi − Xa

)/
na . (A1)

Because
∑na

i=1 Ci
∗(Xi − Xa)/na =

∑na

i=1(Ci
∗ − Ca

∗ )(Xi−
Xa)/na = cov(Ca

∗ , Xa), the first term is equivalent to Price’s co-
variance term. We then add and subtract

∑na

i=1

∑nd
j=1 Ci

j X j/na :

0 = cov(Ca
∗ , Xa) +

na∑

i=1

nd∑

j=1

Ci
j X j

/
na

−
na∑

i=1

Ci
∗
(
Xi − Xa

)/
na −

na∑

i=1

nd∑

j=1

Ci
j X j

/
na . (A2)

As defined above, Ci
∗ =

∑nd
j=1 Ci

j and
∑na

i=1 Ci
∗ = C∗

∗ . Thus,
we have

0 = cov(Ca
∗ , Xa) +

na∑

i=1

nd∑

j=1

Ci
j

(
X j − Xi)/na

−
na∑

i=1

nd∑

j=1

Ci
j X j

/
na +

{
C∗

∗ Xa
/

na} (A3)

Because
∑na

i=1

∑nd
j=1 Ci

j (X j − Xi )/na = (1/na)
∑na

i=1 Ci
∗∑nd

j=1 Ci
j (X j − Xi )/Ci

∗ = ave[Ca
∗ (!X )a] , Price’s average term

is in place. If we then add and subtract
∑na

i=1

∑nd
j=1 Ci

j Xd/na

0 = cov(Ca
∗ , Xa) + ave

[
Ca

∗ (!X )a
]
−

na∑

i=1

nd∑

j=1

Ci
j X j

/
na

+
na∑

i=1

nd∑

j=1

Ci
j Xd

/
na −

na∑

i=1

nd∑

j=1

Ci
j Xd

/
na +

{
C∗

∗ Xa
/

na} .

(A4)

As defined above,
∑na

i=1

∑nd
j=1 Ci

j = C∗
∗ and Xd − Xa =

!X̄ . Using these definitions, we have the following after some
rearrangement:

{
C∗

∗
/

na
}
!X̄ = cov(Ca

∗ , Xa) + ave
[
Ca

∗ (!X )a
]

−
na∑

i=1

nd∑

j=1

Ci
j

(
X j − Xd

)/
na

(A5)

Equation (A5) resembles the Price equation, but there is an
extra term. Because

∑nd
j=1 C∗

j (X j − Xd )
/

nd = cov(C∗
d , Xd ), this

extra term is resolved as follows:
{
C∗

∗
/

na
}
!X̄ = cov(Ca

∗ , Xa) + ave
[
Ca

∗ (!X )a
]

−nd

na
cov(C∗

d , Xd ). (A6)

Dividing both sides of equation (A6) by C∗
∗/na yields equa-

tion (1).

Appendix 2
CONNECTION-BASED EQUATION

To derive equation (2), we multiply the numerator and denom-
inator of the right-hand side of equation (1) by na. Given that
naave[Ca

∗ (!X )a] =
∑na

i=1

∑nd
j=1 Ci

j (X j − Xi ), we have

!X̄ =
na cov(Ca

∗ , Xa) +
na∑

i=1

nd∑
j=1

Ci
j (X j − Xi ) − nd cov(C∗

d , Xd )

C∗
∗

.

(A7)
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This can be broken up as follows:

!X̄ = cov(Ca
∗ , Xa)

C∗
∗
/

na
+

na∑
i=1

nd∑
j=1

Ci
j

(
X j − Xi

)

C∗
∗

− cov(C∗
d , Xd )

C∗
∗
/

nd
.

(A8)

The average change over any connection is

ave
[
(!X )a

d

]
=

na∑
i=1

nd∑
j=1

Ci
j

(
X j − Xi

)

C∗
∗

. (A9)

Thus, using the definitions of C̃a
∗ and C̃∗

d from the main text,
we have equation (2)

!X̄ = cov(C̃a
∗ , Xa) + ave

[
(!X )a

d

]
− cov(C̃∗

d , Xd ). (A10)

Appendix 3
RECURSIVENESS

We will sketch recursiveness for the case of equation (2). Suppose
the ancestral and descendent entities are made up of pa and pd

“subentities,” respectively. Let the character value of subentity
r in ancestral entity i be given by xi,r and the character value
of subentity s in descendant entity j be given by x j,s . Let ci,r

j,s

indicate a connection between subentity r in ancestral entity i and

subentity s in descendent entity j. So

ci,r
j,s =






1 if subentity r in ancestor i connects to subentity
s in descendant j

0 if subentity r in ancestor i does not connect to
subentity s in descendant j.

We assume that the only way for two subentities to be con-
nected is for their “housing” entities to be connected (ci,r

j,s = 1 only
if Ci

j = 1). We also assume that the character of each entity is the
average character of its subentities (e.g., Xi =

∑pa

r=1 xi,r/pa). We
define ca,b

d,e to be the subconnection indicator variable; ca,b
d,∗ and

ca,∗
d,e to be the ancestral and descendant subentity connectedness,

respectively; c̃a,b
d,∗ and c̃a,∗

d,e to be relative values of ca,b
d,∗ and ca,∗

d,e ;
xa,b and x d,e to be ancestral and descendant subentity character;
and (!x)a,b

d,e to be the deviation in character between an ancestral
subentity and a descendant subentity to which it is connected.
Given these definitions and assumptions, we see that

!X̄ = cov(C̃a
∗ , Xa) + ave(a,d)

[
covb

(
c̃a,b

d,∗, xa,b
)

+ave(b,e)
[
(!x)a,b

d,e

]
− cove

(
c̃a,∗

d,e , xd,e
)]

− cov
(
C̃∗

d , Xd
)
.

We include subscripts to indicate the “level” of the biological
hierarchy relevant to the statistical functions (where a and d refer
to entities, whereas b and e refer to subentities). If our subentities
were comprised of sub-subentities, then (!x)a,b

d,e could again be
broken into three terms (two covariances and an average).
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