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Abstract During the struggle for survival, populations occasionally evolve new functions 
that give them access to untapped ecological opportunities. Theory suggests that coevolution 
between species can promote the evolution of such innovations by deforming fitness landscapes 
in ways that open new adaptive pathways. We directly tested this idea by using high- throughput 
gene editing- phenotyping technology (MAGE- Seq) to measure the fitness landscape of a virus, 
bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli. An analysis of 
the empirical fitness landscape revealed mutation- by- mutation- by- host- genotype interactions 
that demonstrate coevolution modified the contours of λ’s landscape. Computer simulations of 
λ’s evolution on a static versus shifting fitness landscape showed that the changes in contours 
increased λ’s chances of evolving the ability to use a new host receptor. By coupling sequencing 
and pairwise competition experiments, we demonstrated that the first mutation λ evolved en 
route to the innovation would only evolve in the presence of the ancestral host, whereas later 
steps in λ’s evolution required the shift to a resistant host. When time- shift replays of the coevo-
lution experiment were run where host evolution was artificially accelerated, λ did not innovate 
to use the new receptor. This study provides direct evidence for the role of coevolution in driving 
evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving 
ecological communities.

Editor's evaluation
This study uses the parlance and framing of the fitness landscape to articulate a co- evolution 
story between host and parasite. It utilizes a tractable system, bacteriophage λ and E. coli, to ask 
questions that unite different pillars of evolutionary theory – evolutionary genetics (via the fitness 
landscape analogy), co- evolution, and host- parasite interactions. The findings will be relevant to a 
number of audiences, and will likely spawn downstream studies that further interrogate the molec-
ular specifics that underlie host- parasite co- evolution.
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Introduction
A starting point for understanding how populations evolve is to assume that they exist in an unchanging 
world where they can adapt toward optimality (Orr, 2005; Pigliucci and Müller, 2010). However, 
even in static environments, populations never reach optimality because their circumstances contin-
uously change as neighboring species coevolve with them (Valen, 1973). This more dynamic view of 
the evolutionary process opens the potential for unbounded evolution and creates new opportuni-
ties for evolutionary innovation (Doebeli, 2011; Thompson, 2005; Nahum et al., 2017; Thompson 
and Cunningham, 2002; Zaman et al., 2014). Darwin recognized this potential in the final pages of 
On the Origin of Species, where he wrote that, ‘It is interesting to contemplate an entangled bank’ 
of organisms evolving with one another to produce such a variety of forms and functions (Darwin, 
1859). But he also realized the empirical challenges created by the richness of species interactions 
within ecological communities in his further description of ‘these elaborately constructed forms, … 
dependent on each other in so complex a manner…’ (Darwin, 1859). The complexity arises because 
an organism’s fitness is a function of its interactions with other species, and the strength and form of 
these interactions can continuously change as they coevolve. Furthermore, the coevolving traits of 
organisms are encoded within genomes by mutations that might interact with one another, a perva-
sive phenomenon called epistasis (Weinreich et al., 2006). This means that interactions at all levels 
must be considered; from mutation- by- mutation within a species (classical epistasis), to mutation- by- 
mutation between species (interspecific epistasis), and higher order phenomena such as the combina-
tion of classic and interspecific epistasis, where the within genome mutation- by- mutation interactions 
depend on the genotype of an interacting species.

Many advances have been made over recent decades that enable us to tackle this combinato-
rial problem. Efficient genetic engineering methods permit the construction of genetic libraries with 
combinatorial sets of mutations that can be used to measure epistasis (Kosuri and Church, 2014; 
Fowler and Fields, 2014). Also available are convenient approaches to measure Darwinian fitness 
of the mutant libraries (Weinreich et al., 2006; Palmer et al., 2015; Khan et al., 2011; Chou et al., 
2011). Coupling these two technologies allows the creation of extensive genotype- to- fitness maps, 
or fitness landscapes (Wright, 1932), that provide information important for predicting adaption (de 
Visser and Krug, 2014; de Visser et al., 2018; Lee et al., 2018). However, these maps alone are 
often not sufficient to predict evolution because their topographies can depend on abiotic environ-
mental conditions (Ogbunugafor et  al., 2016; Lindsey et  al., 2013; Steinberg and Ostermeier, 
2016; Flynn et al., 2013) and biotic interactions (Cervera et al., 2016; Fragata et al., 2019). Here, 
we take two significant steps forward in fitness landscape research. First, we build on the observation 
that landscape structures depend on species interactions by studying the interdependence of two 
species’ landscapes and how they shift during coevolution. Second, we test whether these shifts 
facilitate the evolution of a key innovation, where the species evolves a new function that unlocks new 
ecological opportunities.

As a model system of coevolution, we studied the host- parasite interaction between bacterio-
phage λ and its host, Escherichia coli, because of the extensive background research completed 
on their coevolution and the availability of well- developed molecular tools (Meyer et  al., 2012; 
Maddamsetti et al., 2018). When λ and E. coli are cocultured in the laboratory, one quarter of the 
λ populations evolve to use a new receptor (Meyer et al., 2012). λ’s native receptor is E. coli’s 
outer- membrane protein LamB, but through mutations in its host- recognition gene J, λ evolves to 
use a second receptor protein, OmpF. While only four mutations are necessary for OmpF+ function 
(Maddamsetti et al., 2018), more J mutations typically evolve along the way (Meyer et al., 2012). λ 
gains this new function after E. coli evolves resistance through malT mutations (Meyer et al., 2012) 
that cause reduced LamB expression (Boos and Böhm, 2000). Thus, it was hypothesized that the 
evolution of resistance in E. coli deformed λ’s fitness landscape in ways that promoted λ’s innova-
tion (Thompson, 2012). In line with this, it was previously shown that four out of six λ genotypes 
randomly chosen on the path to evolve OmpF+ had higher relative fitness when cultured with resistant 
malT– cells rather than ancestral cells (Burmeister et al., 2016), suggesting that the host’s coevolution 
would promote key steps in λ’s evolution. However, one out of six genotypes had higher fitness in the 
presence of the ancestral host, and the last λ’s fitness was neutral to the host’s genotype. Given the 
conflicting pattern and small sample size, it could not be concluded whether coevolution was respon-
sible for the innovation. Here, we build on this study with high- throughput technologies capable of 
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measuring the fitness of hundreds of λ genotypes. The technology also produces combinatorial- 
mutation libraries of λ genotypes that can be used to quantify epistasis. This allows us to establish 
the contours of λ’s adaptive landscape rather than simply studying isolated genotypes within the 
space. Given the efficiency of this method, we can now measure λ’s landscape repeatedly in different 
host contexts in order to test whether host- induced deformations that naturally arise during coevolu-
tion promote OmpF+ evolution. Although it has been shown that antagonistic coevolution can hasten 
molecular evolution of phages (Paterson et al., 2010) and lead them to broader host ranges (Hall 
et al., 2011), coevolution’s role in unlocking unexplored regions of the fitness landscape has not been 
directly tested.

Results
λ’s fitness landscape at different stages of coevolution
To construct λ’s fitness landscape, we focused on 10 J mutations that were a subset of mutations λ 
repeatedly evolved on its path to use OmpF (Meyer et al., 2012; Supplementary file 1a). Together, 
they form a 10- dimensional genotype space with a total of 1024 (210) unique variants of different 
combinations of the mutations including, the wild type (WT) allele configuration. Using Multiplexed 
Automated Genome Engineering (MAGE) (Wang et al., 2009), a technique that uses repeated cycles 
of homologous recombination in the λ-red system to produce combinatorial genomic diversity, we 
were successful at engineering a library of 671 genotypes out of the possible 1024 (see Materials and 
methods). To measure the fitness of each genotype in this library, we competed the full library en 
masse and monitored their frequency changes using next- generation sequencing (Figure 1—figure 
supplement 1; Kelsic et al., 2016; Russ et al., 2020). The fitness of each genotype was then calcu-
lated by comparing its change in frequency relative to the non- engineered ancestor. Fitness was 
measured in four replicate competitions for both the ancestral host and malT– host (see Materials 
and methods). To reduce the effect of sequencing errors and to overcome other methodological 
pitfalls, we modified the MAGE protocol by introducing neutral watermark mutations in the library 
construction and developed a high- throughput competition assay that yielded reproducible results 
(see Materials and methods, Figure 1—figure supplement 2, Appendix 1). Overall, we were able 
to measure the fitness of 580 λ genotypes cocultured with ancestral E. coli and 131 genotypes with 
malT– (Figure 1—figure supplement 3). The reduced number of genotypes compared to the initial 
library was due to a combination of factors. The randomness of the MAGE editing process caused 
some genotypes to be rarely constructed and to have low frequencies in the initial library. If these 
genotypes did not possess disproportionately high fitness, then their frequency would fall below the 
limit of detection during the competition, removing them from the analysis. This effect was more 
pronounced in the malT– landscape, where fitness differences were even more extreme.

Visual inspection of the two fitness landscapes reveals host- dependent structures; the landscape 
with the ancestral host has a standard diminishing- returns pattern (Khan et al., 2011; Chou et al., 
2011; Kryazhimskiy et al., 2014; MacLean et al., 2010; Guerrero et al., 2019), while the landscape 
with the malT— host has an atypical sigmoidal shape that plateaus at a higher fitness than the first 
(Figure 1a and b). The non- linear relationship between mutation number and fitness suggests the 
presence of epistasis (mutation- by- mutation interactions), the differences in the magnitude of fitness 
effects between landscapes suggests mutation- by- host interactions, and different shapes suggest 
host- dependent epistasis (mutation- by- mutation- by- host interactions). To determine how much varia-
tion in fitness is explained by these interactions, we performed multiple linear regression analyses (see 
Materials and methods). We found pervasive epistasis in both landscapes (Figure 1c). For the ances-
tral landscape, 58.66% of the variation was explained by the direct effects of mutations and 24.69% 
by pairwise interactions ( R

2
adj = 0.8172 , F55,439 = 39.97, p<0.0001). Similarly, 48.35% of the variance 

in the malT— landscape was explained by the direct mutation effects and 27.61% by the interaction 
terms ( R

2
adj = 0.7072,  F55,252 = 14.48, p<0.0001). To test for mutation- by- mutation- by- host interactions, 

we regressed another linear model that includes host as a predictor variable. In this model, we found 
significant mutation- by- host interactions (Figure 1d), and sizeable effects of the host- dependent epis-
tasis (21 mutation- by- mutation- by- host interaction terms were significant out of 45 and 12.62% of the 
total variance in the data were attributable to these terms, Figure 1d). This three- way interaction term 
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measures the extent to which the landscape structure is transformed by host evolution and suggests 
that λ’s evolutionary trajectory could depend on its host’s genotype.

The role of shifting landscapes in promoting λ’s innovation
To test whether changes in the structure of λ’s landscape opened trajectories to OmpF exploita-
tion, we simulated λ’s evolution on the landscapes using a modified Wright- Fisher model (see Mate-
rials and methods, Figure 2—figure supplement 1). Before running the simulations, we imputed the 
missing λ genotypes’ fitness values to complete the landscapes. We did this by successively choosing 
missing genotypes at random and assigning them the average fitness of their nearest neighbors. 
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Figure 1. Empirical fitness landscapes of λ when infecting the (a) ancestral host and (b) malT– host, and their statistical analyses in (c) and (d). Each 
node in (a) and (b) represents a unique genotype and two nodes are connected by edges if the corresponding genotypes are separated by one 
mutation. The node at zero mutations is ancestral λ. Selection rate (per 4 hr competition experiment) is the difference of Malthusian growth rates of 
a given genotype i to ancestral λ over 4 hr, calculated as  ln

(
λi, 4λi,0

)
− ln

(
λanc, 4λanc,0

)
 , where  λi, t  denotes the density of the given genotype at 

time t. (c) Statistical analysis of direct and interactive effects of mutations in both the landscapes. Colored cells represent statistically significant terms 
determined by multiple regression analysis after correction for multiple hypothesis testing (see Materials and methods). The diagonal elements of the 
matrix represent single mutation effects and all the off- diagonal terms represent pairwise epistatic interactions. See Supplementary file 1i for identity 
of mutations corresponding to different  Gi  . (d) Statistical test of whether the two landscapes varied in topology. The additional variable, E, represents 
environment (host) to indicate mutation- by- host effects in the lower- left matrix and mutation- by- mutation- by- host (G×G×E) in the upper- right matrix. 
Light colored cells indicate terms present in the final AIC- optimized model out of the full- factorial model (F76,726 = 37.45, p<0.0001), and dark colored 
cells indicate statistically significant terms after controlling for rate of false positives (see Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic illustration of MAGE- Seq used to construct λ’s fitness landscapes.

Figure supplement 2. Test to determine whether amplification distorts measurements of fitness.

Figure supplement 3. Distribution of λ genotypes present with respect to the number of mutations they possess.

Figure supplement 4. Test of whether the error in our estimates of selection rates (per 4 hr) is influenced by the magnitude of the estimate.
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The simulations were run based on conservative estimates of the number of generations and popu-
lation sizes from previously published (Meyer et al., 2012) and this study’s coevolution experiments 
(960 generations; ~6.3×109 λ particles, Figure 4—figure supplement 1; Meyer et al., 2012) and 
λ’s intrinsic mutation rate (7.7×10–8 base–1 replication–1) (Drake, 1991). We predicted that λ would 
be more likely to evolve OmpF function (three specific mutations plus one additional Maddamsetti 
et al., 2018) in simulations that accounted for coevolution by shifting the population from one land-
scape to the next. We ran trials where λ evolved on only one landscape at a time to establish a base-
line for the frequency of OmpF+ evolution without coevolution. Next, we ran nine shifting landscape 
scenarios where we varied how many generations λ evolved on the ancestral host landscape before 
switching to the malT– landscape. As anticipated, the switching protocol increased the frequency of 
OmpF+ evolution in all nine treatments above the single host simulations, but only seven out of nine 
treatments were found to be significantly higher (Figure 2; ANOVA: F- ratio=6.14, d.f.=99, p<0.0001, 
Supplementary file 1b). This result was robust to changes in population size and total number of 
generations, and when controlling for both, different number of genotypes measured in the two 
landscapes, and noise created by imputing missing data points (Figure  2—figure supplement 2, 
Appendix 2).

Reconstructing coevolution in an experimental population
The simulation results suggest that the shifting landscape encourages λ’s evolution to gain the 
required mutations for OmpF function. In particular, the simulations show that the first steps along 
the path to the innovation are more likely if λ first adapts to the ancestral bacterium, meanwhile 
the final steps are more likely to occur if the host coevolves resistance. To verify this result with labo-
ratory experiments, we analyzed the path λ took to OmpF+ in a single population cryopreserved 
from the previous coevolution study (population ‘D7’ in Meyer et al., 2012; Table S1). Population 
‘D7’ was chosen because λ evolved relatively few mutations in this population. We believed this 
choice was conservative and constitutes a strong test of our hypothesis since fewer λ mutations 
would provide fewer opportunities to detect host- induced contingency. We sampled λ strains from 
different timepoints of population ‘D7’ and sequenced their J gene (Figure 3a, Supplementary file 
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Figure 2. Simulation results of the frequency of OmpF- use evolution observed when fitness landscapes were 
shifted at different frequencies. Each bar represents an average of 300 simulation runs. Error bars indicate 95% 
confidence intervals. OmpF evolution is favored when λ evolves on shifting landscapes. The only two shifting 
landscape treatments that are not significantly higher than simulations on the constant malT— landscape are the 
0.2 and 0.4 treatments (Supplementary file 1b).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Schematic outline of the simulations used to evolve λ on the fitness landscapes.

Figure supplement 2. Additional simulations to verify that shifting landscapes promote OmpF+ evolution.
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1c and Supplementary file 1d). Next, we ran pairwise competition experiments between λ geno-
types at different stages of evolution on the two hosts. We found that the first mutation on the line of 
descent to OmpF+ required ancestral E. coli to evolve, while the second mutation required malT– E. 
coli (Figure 3b and c). In addition, the eventual OmpF+ genotype with five J mutations only outcom-
peted the genotype with two mutations when provided with malT– hosts (Figure 3—figure supple-
ment 1). These findings show that the path λ took in population D7 required it to sequentially adapt 
to both host types and that λ’s fitness landscape changed during coevolution in a way that ultimately 
facilitated evolutionary innovation.

At this point, we shifted the focus of our study to testing whether E. coli’s resistance evolution was 
also impacted by λ’s evolution. Before reconstructing J evolution, it was believed that E. coli evolved 
resistance first and then J mutations evolved in response (Meyer et al., 2012, Figure 5). However, J 
evolved within a day, while malT— mutations were previously shown to fix between 5 and 8 days in the 
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Figure 3. J evolution (a) and evidence of the interdependency between λ and E. coli fitness during their coevolution (b- d). (a) Phylogenetic 
reconstruction and relative abundance of λ genotypes isolated through time from a previously coevolved community (Meyer et al., 2012). Each letter 
and star indicate a non- synonymous mutation in J (see Supplementary file 1c for labels’ corresponding mutations). A genotype’s relative abundance 
on a given day is denoted by the fraction of the total height of the y- axis that it occupies (e.g. on day 9, frequency of ABC is 0.2 and A**C is 0.8; see 
Supplementary file 1d). The lineage WT- A- ABC- ABCDE eventually evolves OmpF function and fixes in the population; resistance in E. coli through 
malT— rises to high frequencies between days 5 and 8 (Meyer et al., 2012). (b & c) Selection rates (per 24 hr) of phage genotypes on the two hosts. 
Each bar represents the mean of three experimental replicates. While mutation A is favored over wildtype (WT) λ in the presence of the ancestral 
host and not malT—, AB only outcompetes A in the presence of malT— and not the ancestral host. One tailed t- tests to test if the mean selection rate is 
significantly greater (or less) than zero: A vs WT with ancestor host-  t = 98.76, d.f. = 2, p < 0.0001 ; A vs WT with malT— -  t = −4.99, d.f. = 2, p = 0.0190 ; 
AB vs A with ancestor-  t = 3.4, d.f. = 2, p = 0.0383 ; AB vs A with malT— -  t = −8.88, d.f. = 2, p = 0.0062 . (d) Selection rate (per 4 hr) of malT– E. coli 
relative to its ancestor in the presence of λ from different stages of coevolution. Each competition was replicated three times. Lowercase letters denote 
significance via Tukey’s honest significance test, see Supplementary file 1g for pairwise p- values (ANOVA: F- ratio=111.22, d.f.=11, p<0.0001). One 
tailed t- tests were also used to test if the selection rate of malT— was greater than zero WT:  t = 2.44, d.f. = 2, p = 0.676 ; A:  t = 5.12, d.f. = 2, p = 0.0181 ; 
ABC:  t = 26.59, d.f. = 2, p = 0.0007 ; A**C:  t = 71.67, d.f. = 2, p < 0.0001 . This shows that malT— is unlikely to evolve in the presence of WT λ but it 
becomes progressively more likely as λ gains mutations. Asterisks over all the competitions indicate significance level corresponding to the p- values. 
Error bars in all bar graphs represent one sample SD.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Competition assay of λ isolates from population D7.
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population (Meyer et al., 2012). The timing suggests that λ improved infectivity and then applied 
pressure on E. coli to evolve resistance. To test whether λ evolution promoted host resistance evolu-
tion, we ran competition experiments between ancestral and malT– hosts in the presence of phages 
isolated from four different time points. We found that malT– was not significantly more fit than the 
ancestral E. coli in the presence of the ancestral λ, but it was more fit in the presence of the evolved 
λs (Figure 3d). This provides another example of interspecific epistasis, but this time the parasite’s 
genotype alters the host’s landscape. This result combined with the others suggests that there is an 
intricate coevolutionary feedback at play between λ and E. coli: λ evolves J mutations that better 
exploit E. coli, which in turn applies pressure on E. coli to evolve resistance. Once resistance evolves, 
new adaptive pathways become available to λ that encourage the innovation. For the computer 
simulations, we arbitrarily chose timepoints to switch from one host to the other; however, in reality, 
the dynamics of the switch are dictated by the host- parasite coevolution.

Evolutionary replay experiments
To further test the role of coevolutionary processes at driving λ’s innovation, we ran replays of the 
coevolution experiment (Figure 4—figure supplement 2). We initiated 12 populations with malT– host 
that already possessed resistance, and 12 populations with ancestral host where λ and E. coli would 
coevolve normally. The former treatment should hinder the evolution of OmpF function because it 
denies λ the opportunity to evolve first with ancestral E. coli. In line with our expectations, 0 of 12 
replicates evolved OmpF use in the malT– treatment, meanwhile 3 out of 12 evolved the innovation 
in the ancestral treatment (Figure 4a and b). By sequencing J alleles of the resulting λ genotypes, 
we found that fewer mutations evolved with malT– despite evolving for the same length of time. This 
suggests that λ’s evolution was stymied by starting with the resistant host (Supplementary file 1e), 
and by disrupting the coevolutionary process we interfered with λ’s ability to innovate.

Lastly, we tested whether malT– would still promote the evolution of OmpF use if the replay exper-
iments were initiated with λ genotypes positioned further along the path to gaining OmpF function. 
We initiated two more replays: one with a λ strain that was just a single mutation away from becoming 
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Figure 4. Evolutionary replay experiments reveal that λ’s evolution to use OmpF depends on host coevolution. (a) Wildtype (WT) λ with ancestral 
host, (b) WT λ with malT–, (c) λ one mutation removed from evolving OmpF function with malT—, and (d) identical setup as (c), but with λ two 
mutations removed (see Supplementary file 1f for identity of mutations). (e) The bar graph provides the frequency of OmpF+ evolution compared 
to the frequency observed by Meyer et al., 2012. Given λ’s established one in four rates of OmpF+ with ancestral host, the probability of observing 
no OmpF+ evolution in 12 replicate populations is ~0.03. Thus, no positives for OmpF evolution in (b) shows that λ’s evolution to OmpF function 
is significantly hindered, when coevolution is initiated with malT— host. However, malT— does not impede OmpF+ evolution, when the coevolution 
is initiated with already evolved λs (p- values for Fisher’s exact test: between (b) and (c) p=0.0261; between (b) and (d) p=0.0122). Notably, some λ 
populations went extinct which is common for these experiments and was previously shown to be caused by the evolution of resistance mutations in E. 
coli’s ManXYZ protein complex (Meyer et al., 2012).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A schematic overview of the coevolution experiments performed in this study and by Meyer et al., 2012.

Figure supplement 2. Phage densities during the coevolutionary replay experiment performed in Figure 4.

https://doi.org/10.7554/eLife.76162
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OmpF+, and another that was two mutations away (see Supplementary file 1f for J alleles). 16 of 24 
λ populations evolved OmpF+ showing that whether malT– promotes OmpF+ evolution depends on 
where the λ genotypes are located in the fitness landscape (Figure 4c and d).

While the goal of these experiments was to test a specific hypothesis about λ’s innovation, the 
results have broader implications for coevolutionary dynamics and the repeatability of evolution. We 
showed that if the host outpaces the parasite (Figure 4b; λWT and malT– E. coli), then the parasite is 
unable to innovate. This is in line with a previous study showing that if the host evolves even higher 
levels of resistance than provided by the malT mutation, λ loses the ability to innovate (Meyer et al., 
2012). When specific pairs of host and parasite genotypes are combined that are at complementary 
steps in the coevolution, then the innovation becomes possible and even highly likely (Figure 4a, c 
and d; λWT and ancestral E. coli, λ–1 and malT– E. coli, and λ–2 and malT– E. coli). This suggests that 
the genotype of host and parasite that first encounter each other in nature, as well as the timing of 
their coevolution, play an important role in determining the dynamics and endpoints of their evolution.

Discussion
This study provides multiple direct tests of coevolution’s role in driving innovation, as well as revealing 
a more complicated model of λ and E. coli coevolution than previously published (Figure 5). λ was 
thought to evolve OmpF use as a direct response to malT– resistance (Meyer et al., 2012); however, 
here we learned that key steps were missing from that model. λ is initially poor at infecting its host, 
so it evolves mutations in J that enhance its infectivity. The new λ genotypes apply pressure on E. 
coli to evolve resistance. When host- resistance increases in the community, λ’s fitness landscape is 
deformed in a way that promotes J evolution toward OmpF use, but only if it had already acquired 
some J mutations. Remarkably, the timing and coordination of each of these interdependent steps 
is facilitated by the reciprocity ingrained in host- parasite coevolution. Altogether, we were able to 
provide direct experimental evidence that fluctuating landscapes, also known as fitness seascapes 
(Merrell, 1994), can promote evolutionary innovations.

LamB OmpF

LamB OmpF

J

J

E. coli

E. coli

λ

λ

Coevolutionary model published in Meyer et al. 2012

New understanding of coevolution

Figure 5. Previous and new version of λ- E. coli coevolutionary model. In the original model, E. coli evolves resistance by repressing λ’s receptor and 
then λ evolves mutations that allow it to use a new receptor. The updated model describes a more involved dynamic where λ evolves mutations that 
improve its ability to infect E. coli; with increased pressure to avoid infection, E. coli responds by evolving resistance, and then λ evolves the remaining 
mutations that leads to the ability to infect using the new receptor.
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Our studies show that the fitness of a parasite depends on complex genetic interactions within its 
own genome and with the genomes of interacting hosts. These interdependencies result in highly 
contingent evolution, where λ is unlikely to evolve an innovation unless it participates in a particular 
sequence of coevolutionary steps with its host. Despite the stochasticity that is expected to arise in 
systems with substantial historical contingency (Gould, 1989; Blount et al., 2018), λ’s evolution to 
use a new receptor is repeatable because the sequence is coordinated by coevolutionary feedback. 
While coevolution may yield tangled banks of interactions, we demonstrate how high- throughput 
technologies can be used to untangle them and to predict evolution. The ability to successfully predict 
evolution in any system represents a significant step forward, but it is particularly notable in conditions 
that incorporate species interactions. Our approach was data- intensive and relied on technologies 
that are not currently available for more natural and complex ecological systems; however, many 
efforts are underway to develop these technologies (Bergelson et al., 2021). This study shows that 
these efforts are worthwhile because even though the resulting data may appear to be an uninterpre-
table morass, computational analyses can be leveraged to penetrate the information to aid learning 
and prediction.

Ideas and speculation
This work was completed during the 2020–22 SARS- CoV- 2 pandemic, raising the question of whether 
this research provides insight into strategies to prevent future pandemics. While it is difficult to extrap-
olate, there are general lessons that can be applied to understanding pandemics. First, natural coevo-
lutionary processes can repeatedly drive the evolution of viruses to achieve difficult adaptations that 
underly host- range expansions. On one hand, this knowledge is alarming because it suggests that 
pandemics may be more likely than previously anticipated, but on the other hand, the repeatability 
provides an opportunity to study the process and develop intervention strategies. We also learned 
that shifting conditions can enhance the evolutionary potential of viruses, suggesting that there could 
be additional unexpected consequences of human- caused environmental changes.

Materials and methods
Bacterial and phage strains
The ancestral phage λ strain in our study is cI26; it is a strictly lytic strain that was used in the previous 
coevolution study on which this paper builds (Meyer et al., 2012). λ has two life cycles: lytic and 
lysogenic. In the lytic life cycle, λ infects its host, creates multiple copies of its genome, and lyses the 
cell to produce new viral particles. This is unlike the lysogenic life cycle of λ, where it stably integrates 
its genome into the host genome and is replicated along with the host (Hendrix, 1983). The λ strain 
cI26 has a frameshift mutation in the cI gene that disrupts the regulatory protein cI required by λ 
to switch to a lysogenic life cycle (Meyer et al., 2012). This renders cI26 obligatory lytic. The other 
λ strain we used was cI857 (provided by Ing- Nang Wang, State University of New York, Albany) to 
construct our λ genomic library using MAGE (discussed in ‘Fitness landscapes’ section). The advan-
tage of using cI857 over cI26 is that it is able to form a lysogen and as a genomic complex with E. coli’s 
genome, its genome can be easily edited with E. coli engineering methods. cI857 has an advantage 
over typical lysogenic λ because it has a mutation in the cI gene that makes the repressor protein cI 
unfold at high temperatures (Meyer et al., 2016). This enables us to induce the lytic life cycle of cI857 
from lysogens using heat shock treatments, which has fewer side effects compared to using mutagens 
that the typical strain requires for induction.

We used E. coli B strain REL606 for the ancestral- sensitive host and its derivative EcC4 for the 
evolved- resistant (malT–) host to construct fitness landscapes (in Figure 1) and run competition assays 
(in Figure 3). REL606 was the ancestral host in the coevolution experiments performed by Meyer 
et al., 2012, and EcC4 was isolated from one of the coevolving populations that has a single mutation, 
a nonsense mutation (C→T) at genome location 3,482,567 in malT gene (Table S5 in Meyer et al., 
2012). MalT is a positive regulator of lamB, so a disruption in transcription of malT inhibits LamB 
expression (Boos and Böhm, 2000). Resistance to λ in EcC4 due to this nonsense malT mutation 
has been shown to yield high levels of resistance, the equivalent of a nonsense mutation in lamB 
(Figure S5 in Chaudhry et al., 2018). We used another malT— mutant of REL606, named LR01, for our 
coevolutionary replay experiments (Figure 4). This strain has a 25 bp duplication at genome location 
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3,482,677 causing a frameshift in malT. LR01 was also isolated from a coevolving population of λ and 
E. coli (Figure S3 in Meyer et al., 2012); however, unlike EcC4, LR01 has a high reversion rate to malT+ 
that results in ‘leaky resistance’ to λ (Chaudhry et al., 2018). This allows λ populations to sustain 
serial dilution transfers and thus was critical for the success of the coevolutionary replay experiments 
(Figure 4). We note that while we use the term ‘resistant’ to refer to malT– genotypes, this ‘resistance’ 
is specific to the OmpF— λ in this study; these bacterial strains are susceptible to OmpF+ λ phage.

Several E. coli strains were used for culturing λ. The most often used was DH5α, a lacZα– derivative 
of E. coli K- 12, because it is permissive to all λ genotypes and it lacks lacZ which is used as a genetic 
marker to distinguish phage genotypes in competition assays (additional information in the ‘Phage 
Competition Experiments’ section). Two lamB– mutants of E. coli with non- functional LamB were used 
interchangeably to culture OmpF+ λ on LB agar. One strain was a derivative of REL606 that has a 
1 bp insertion of nucleotide T between base positions 610 and 611 in lamB (Meyer et al., 2012; 
Meyer et al., 2015), and the other strain was an E. coli K- 12 derivative from the Keio collection (lamB– 
JW3996) (Baba et al., 2006). We found no difference in the efficiency of plaquing on the two strains.

MAGE was performed in an E. coli K12 strain, HWEC106, provided by Harris Wang, Columbia 
University. The strain’s mutS gene is deleted and it possesses the pKD46 plasmid with an inducible 
λ-red recombineering system (Datsenko and Wanner, 2000). cI857 successfully integrated into this 
strain’s canonical ATTB site located near the galK gene (Meyer et al., 2012; Maddamsetti et al., 
2018; Petrie et al., 2018).

Media
We performed most experiments in conditions identical to the initial coevolution experiment (Meyer 
et al., 2012). For competition assays (low and high- throughput) and two of the four coevolutionary 
replay experiments (Figure 4a and b), bacteria and phage were cocultured in modified M9 Glucose 
(47.7 mM disodium phosphate, 22.0 mM potassium phosphate monobasic, 18.7 mM ammonium chlo-
ride, 8.6 mM sodium chloride, 0.1 mM calcium chloride, 10 mM magnesium sulfate, 5.55 mM glucose, 
and 0.2 mM of LB) as used in Meyer et al., 2012. A new medium was used for the remaining two 
coevolution replays (Figure 4c and d) that we call Tris DM Glucose: 1.6 mM potassium phosphate 
monobasic, 0.59 mM potassium phosphate dibasic, 0.2 mM of calcium chloride, 50 mM Tris base (pH 
7.4), 10 mM of magnesium sulphate, 7.5 μM thiamine, 3.2 mM ammonium sulphate, and 5.55 mM 
glucose. This medium is improved over M9 Glucose because it is less prone to magnesium precipita-
tion, and fortunately has no noticeable effect on the coevolution.

For isolation, estimating densities and initial culturing of bacteria and phage, four more media were 
used according to the following specifications—(a) LB (Lennox Broth): 10 g tryptone, 5 g yeast extract, 
and 5 g sodium chloride per liter of water, (b) LBM9: 20 g tryptone, 10 g yeast extract, 12.8 g sodium 
phosphate heptahydrate, 3 g potassium phosphate monobasic, 0.5 g sodium chloride, 1 g ammonium 
chloride, 1.2 g magnesium sulfate, 22 mg calcium chloride per liter of water, (c) LB agar: 10 g tryptone, 
5 g yeast extract, 5 g sodium chloride, and 16 g agar per liter of water, (d) soft agar: 10 g tryptone, 
1 g yeast extract, 8 g sodium chloride, 7 g agar, 0.1 g glucose per liter of water, supplemented with 
a final concentration of 2 mM calcium chloride. The soft agar was also supplemented with 10 mM 
magnesium sulphate to improve plaquing of phage particles.

Isolation and culturing techniques
Most strains were grown at 37°C, except for HWEC106, which was grown at 30°C because pKD46 
has a temperature- sensitive origin of replication. To ensure uniform aeration and nutrient availability, 
4 ml cultures were shaken at 220 rpm and 10 ml cultures at 120 rpm; different rpm was chosen to 
ensure comparable aeration in cultures (10 ml cultures were grown in 50 ml Erlenmeyer flasks and 
4 ml in glass tubes). We used LBM9 to grow phage cultures and LB to grow bacteria cultures, unless 
otherwise indicated. All bacteria and phage stocks were stored by freezing 1 ml of culture with 15% 
glycerol at −80°C. We revived phage from freezer stocks by growing ~2 μl of frozen stocks on 100 μl 
of DH5α overnight culture in 4 ml of LBM9. To harvest phage, cells were killed and separated by 
adding 100 μl of chloroform and centrifuging the solution at 3900 rpm for 10 min. The supernatant 
containing phage lysate was then stored with ~2% chloroform at 4°C. Bacteria were revived from 
−80°C by growing ~2 μl of the frozen stocks over night in 4 ml of LB.
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Phage strains were isolated from a population by infusing phage particles into bacterial lawns of 
DH5α cells. We made these infused plates by mixing a small volume (between 10μl and 100 μl) of 
diluted phage and ~5 × 108 host cells to a 4 ml of molten soft agar at 55°C, and pouring the mixture 
over an LB agar plate (Sambrook and Russell, 2001). The soft agar was allowed to solidify and then 
incubated overnight at 37°C for phage particles to form plaques. A plaque is a near- circular clearing 
that forms on the bacterial lawn when nearby cells are killed by an infection that is initiated by a single 
phage particle. Phage dilutions were made in saline solution (8.5 g/L NaCl) and implemented to yield 
between 30 and 300 plaques. A single plaque was picked from the infused plates and clonal phage 
stocks were made by culturing the isolate overnight with DH5α and extracting phage lysate using 
techniques similar to frozen λ stocks.

Estimation of phage densities
Infused plates with appropriate dilutions of phage in saline solution (8.5  g/L NaCl) were used to 
estimate phage densities for phage competition assays. We controlled the number of plaques on an 
infused plate so that individual plaques could be identified and counted. These counts were used to 
back- calculate the phage growth rate.

To estimate the phage densities in the coevolutionary replay experiments, serial dilutions of phage 
were spotted on a bacterial lawn of DH5α. We made the bacterial lawns by adding ~5 × 109 cells of 
DH5α to 10 ml of molten soft agar at 55°C, and pouring it over a 150 mm diameter petri dish of LB 
agar base (Sambrook and Russell, 2001). After the soft agar solidified, 2 μl of eight different phage 
dilutions were added on top of the surface, let to dry, and incubated overnight at 37°C. The plaques 
were counted from the dilution where we could identify individual plaques. We then used these counts 
to calculate phage density in pfu per ml, where pfu is plaque forming units.

Sequencing for analyses of mutations in J
We routinely sequenced the J gene of λ to verify the identity of stocks and to determine whether 
J evolved in the replay experiments. DNA samples were PCR amplified using Q5 high- fidelity 2 × 
master mix (New England Biolabs) and primers described in Supplementary file 1h. Unpurified PCRs 
were submitted to Genewiz (La Jolla, CA) for Sanger sequencing.

Calculation of selection rate using Malthusian parameter
Selection rate ( s ) was used to quantify the difference in fitness between pairs of strains (say X and Y) in 
a given environment. It is calculated as the difference of their Malthusian parameters:

 s =
ln XT

X0
−ln YT

Y0
T   (1)

where  Xt  and  Yt  are the densities of strains X and Y, respectively, at time  t , and  T   is the period of 
time over which strains are assessed (and the assay starts at  t = 0 ). Selection rate has units of inverse 
time; however, in all our figures, we report selection rate as per unit time period ( T  ) of the assays. We 
reported the values this way because λ does not strictly grow exponentially and it can be misleading 
to report normalized rates after dividing by  T   because the rates cannot be extrapolated for different 
times in a straightforward way like for exponential growths. That being said, for readers who want the 
per hour rates, we have provided the value of  T   in hours within each figure caption.

Construction of λ genomic library using MAGE
Our goal was to measure the fitness of a significant number of λ genotypes to establish the basic 
structure of the landscape. To accomplish this, we generated a combinatorial library of genotypes 
made with 10 J mutations previously observed to evolve en route to OmpF+ (Supplementary file 
1a). These mutations were chosen because they fell within two <100 base frames where adaptive 
mutations tended to evolve. We used a genetic engineering technique called MAGE to construct 
the library (Wang et al., 2009). This technique employs the λ-red recombineering system that can 
efficiently recombine single- stranded DNA into E. coli’s genomic DNA. To engineer λ, λ’s genome 
is integrated into E. coli’s genome, creating a lysogen. The λ genome in the lysogen (a prophage) 
becomes dormant and can be treated as any other E. coli gene. Gene edits in this λ lysogen are made 
by expressing λ-red from a plasmid (pKD46) within E. coli cells (Datsenko and Wanner, 2000) and 
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electroporating synthetic oligos with specific mutations written into the sequences. Multiple oligos 
can be combined into a single experiment in order to create a diverse library of different combinations 
of the mutations. The output of this procedure is a single sample with a library of genotypes mixed 
together.

We previously reported our MAGE protocol in Maddamsetti et al., 2018. The oligos used are 
in Table S1 of the manuscript listed under the subheading ‘10- mutation library’. There are a few 
important aspects of the oligo and protocol design that we discuss here, but for more detailed infor-
mation see the original paper.

Our goal was to construct a genetic library with each combination of mutations represented 
equally, this means a 50/50 split of mutant and WT states at each site. To achieve this, we modified 
the typical MAGE protocol. First, when mutations were clustered near each other such that a single 
90- mer used for MAGE editing encompassed multiple mutations, we designed multiple oligos with 
different combinations of the mutations at these nearby sites. Without doing this, edits would be 
correlated, creating an imbalance in the network representation, and limiting our ability to determine 
the effects of individual mutations. Second, we designed oligos with the WT state at the 10 positions. 
Including these oligos slowed the efficiency of MAGE to introduce mutations because sometimes 
they would overwrite an edit; however, it safeguarded the procedure from saturating the library with 
the 10 mutations. A third strategy was employed to even out the variation at these 10 sites. This was 
to perform MAGE starting from two orthogonal points in the genetic network; λ that had none of 
the 10 mutations and one that we engineered in all 10 (Maddamsetti et al., 2018). Additionally, we 
ran MAGE on three separate replicates from each starting point in order to enhance the potential 
to explore more genetic space. Lastly, we ran the MAGE protocol for 50 cycles, which is the number 
of cycles a computer simulation of MAGE with an efficiency of 10% recombination efficiency per 
cycle predicted we would need to construct all variants. In the end, we mixed all six MAGE libraries 
together in equal frequencies to maximize diversity in the library.

Our design also included measures to improve our ability to detect rare variants in the library. The 
next step of the fitness landscape protocol is amplicon sequencing with an Illumina MiSeq. This tech-
nology has relatively low rates of error (~10–3 per base sequenced); however, we anticipated that some 
of the genotypes in our library would fall below this frequency, making it impossible to distinguish 
between false positives and true reads. To improve our resolution, we edited a synonymous mutation 
adjacent to each focal mutation. We called this a watermark mutation because it helped us distinguish 
between a true genome edit and an error in sequencing. By only recording the presence of a focal 
mutation if it occurred alongside the watermark, we decreased our detection limit from ~10–3 to ~10–6.

The watermark strategy we employed was slightly more complicated than this. Most synonymous 
mutations at the C- terminal end of proteins, like our watermark mutations, have no fitness effects 
(Kelsic et al., 2016). Despite this, we designed a way to test for neutrality. For each focal mutation, we 
edited one of two different watermark mutations (see Supplementary file 1i for list of mutations). This 
allowed us to compare equivalent genotypes with distinct watermarks in order to test whether one 
of the synonymous mutations impacted λ’s fitness when compared to the other. We found that there 
was no significant fitness effect of the neutral mutations on the phage genotype (see Appendix 1).

Empirical fitness landscape resolved through one-pot competition 
experiment
After creating the λ genomic library, we measured the relative fitness of genotypes with respect to 
the WT λ. To do this, we cocultured the λ genomic library and ancestral λ in a 1:9 ratio. This ratio 
was used so that the most abundant competitor remains the ancestor throughout the competition 
experiment. This means that the competitive fitness we measured is with respect to a single genotype. 
If we had not done this, then as the community of engineered λ shifts during the competition, and 
more fit genotypes become enriched, they will change the mean fitness of the population and cause 
mildly fit genotypes to begin to decline, making them appear unfit. Flooding the flask with ancestral 
λ and running competitions for a short time period (4 hr) solves this problem.

Having a disproportionate number of ancestral λ has a pitfall. We measured λ fitness by 
comparing the frequency changes of each genotype using amplicon sequencing (more information in 
the next section). The problem is that most of our sequencing effort would be spent on sequencing a 
single genotype, the ancestor. To avoid this, we engineered an ancestral genome with 6 synonymous 
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mutations, where the reverse primer binds. These edits interfered with primer binding and caused 
selective amplification of the library λs. We edited 6 ‘wobble’ positions: 3381 (g→t), 3384 (c→a), 3387 
(c→a), 3390 (c→t) 3393 (g→a), and 3396 (c→a). The engineering was done using MAGE with the oligo 
provided in Supplementary file 1j. These edits were made at the end of the protein (3399 nucleotide) 
and so they likely did not affect λ fitness. We did not test this because this engineered strain acted as 
a standard competitor for all competition experiments and so it should have no effect on the relative 
fitness comparisons.

We ran eight competitions, four in the presence of ancestral E. coli and four with malT– E. coli. 
Competitions were inoculated with ~107 total λ particles and ~2 × 108 cells into 10 ml of M9 glucose 
in 50 ml flasks. The cells were preconditioned in M9 glucose for 24 hr before the competition. Flasks 
were cultured for 4 hr at 37°C and shaking at 120 rpm. 1 ml samples were removed from the library 
before and after the competition for processing. Phage particles were concentrated using PEG precip-
itation (Sambrook and Russell, 2001). The pellet was resuspended in 25 μl of molecular grade water 
and then a two- step PCR reaction was performed in order to amplify just the region of interest, to 
attach barcodes to the amplicons so that we could multiplex samples into a single Illumina run, and 
attach adapters required for Illumina sequencing. The protocol was published by Kelsic et al., 2016. 
The primers we used are provided in Supplementary file 1k. As described in Kelsic et al., we ran two 
separate PCR reactions for each sample and used a unique barcode on each. This allowed us to test 
for amplification bias, which we did not detect (Figure 1—figure supplement 2).

Sequencing
Amplicon samples were pooled together and sequenced using an Illumina Mi- Seq maintained in the 
Systems Biology Department at Harvard Medical School. 100 base paired- end reads were run. We 
were able to extract on average 107,839 high quality reads per sample with standard deviation of 
26,889. This provided considerable coverage to reliably estimate fitness for even rare genotypes.

Post-sequencing analysis and construction of fitness landscape
Amplicon sequences were analyzed to calculate selection rates for each engineered genotype. These 
values were later used to construct the fitness landscapes. We used a combination of custom Python 
and MATLAB (version R2019b) scripts to read and concatenate the raw paired- end reads, identify the 
genotypes based on the focal mutations they possessed, and to count their abundances. All focal 
mutations were called only if either of the two corresponding watermark mutations were also present. 
We removed any reads that contained more than one mutation other than the focal and watermark 
mutations. This essentially acted as a quality filter and we did not have to filter based on the Illumina 
provided Q- score. For each competition, a mean of counts corresponding to the two barcodes used 
in PCR amplifications was taken for all the genotypes. If the counts for both, initial and final timepoints 
were available for a genotype, they were used to estimate the genotype’s Malthusian growth rate, 

given by the calculation  
ln λ i,T

λ i,0
T   where  λi,t  is the density of the given genotype at time  t  and T is the 

total time of the competition. Note that most genotypes performed poorly on malT— host and fell 
below detection limit at the final timepoint. We quantified the differences in fitness of all genotypes 
by calculating their selection rate with respect to the WT λ (see ‘Calculation of selection rate using 
Malthusian parameter’ section). The final fitness landscapes (Figure 1a and b) were constructed by 
taking the mean of the selection rates obtained from the four replicate competition trials performed 
on the same host.

Statistical analysis of fitness landscapes
We used multiple linear regression models to quantify the genetic interactions in the fitness land-
scapes. We regressed fitness values on each landscape against individual effects of the mutations and 
the pairwise epistatic interactions between them (genotype- by- genotype or G×G interactions). This 
allowed us to estimate the contribution of epistasis toward explaining the observed fitness data. The 
fitness of each genotype in the regression model was thus described by 55 predictor variables (10 
main effect terms for the 10 mutations +45 interaction terms):

 
y = β∗∗ +

∑
i
βi∗ Gi +

∑
i<j

βijGiGj
  (2)
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where  β∗∗  is the intercept, all other βs are regression coefficients, contribution of an individual 
mutation i is described by the term  Gi  , and the effect of pair of mutations i and j are captured by 
terms  GiGj  , where  Gi  is an indicator variable that is equal to zero when the mutation i is absent and 
one when present. After fitting the model, we used Benjamini- Hochberg procedure (Benjamini and 
Hochberg, 1995) to control for false discovery rates and identify statistically significant terms in the 
model (see Figure 1c). All analyses were performed in R version 3.6.1 (R Development Core Team, 
2019). The error in fitness estimates of the genotypes did not depend on the mean fitness value of 
the genotypes (Figure 1—figure supplement 4).

To understand how λ’s landscape differed between the two hosts, we incorporated the host 
genotype as a predictor variable in the linear model and regressed the combined fitness data of 
both landscapes together. This allowed us to test if a mutation significantly interacted with the host 
(genotype- by- environment or G×E interaction) and whether interaction between pairs of mutations 
changed with the host genotype (genotype- by- genotype- by- environment or G×G×E interaction). The 
combined full- factorial model consisted of a total of 111 terms (10 G for individual mutation +1 E for 
host +45 G×G+10 G×E+45 G×G×E terms),

 
y = β∗∗∗ +

∑
i
βi∗∗Gi + β∗∗+E +

∑
i
βi∗+GiE +

∑
i<j

βij∗GiGj +
∑
i<j

βij+GiGjE
  (3)

where additional  E  is an indicator variable for host type and other notations follow same scheme 
as in Equation 2. Since the fit of a model generally improves as the number of predictor variables 
increases, we tested for overfitting using Akaike information criterion (AIC) (Akaike, 1974). AIC is a 
penalized- likelihood criterion which penalizes a model for increasing number of parameters in it. The 
model with the greatest relative likelihood is considered to be the one with minimum AIC value. We 
minimized AIC value using the step function in R Development Core Team, 2019 to uncover subsets 
of predictor variables that have high predictive power. This resulted in a more parsimonious model 
(77 terms out of a total 111, see Figure 1d). A complimentary adjusted R- squared analysis came to 
the same conclusion,  R

2
adj = 0.775  for the reduced model and  R

2
adj = 0.769  for the full- factorial model 

(higher values indicate more predictive and parsimonious models). After model selection, we used 
Benjamini- Hochberg procedure to determine which variables were significantly predictive (Figure 1d). 
This procedure only controls for false positives and is susceptible to false negatives. In this way, it is 
conservative for our purposes.

Simulation of λ’s evolution on fitness landscapes
To test if the changes in λ’s fitness landscape facilitated its evolution to infect via OmpF, we simulated 
λ’s evolution on the two landscapes we measured and recorded whether OmpF+ genotypes arose to 
a high enough frequency that we would have detected them in the original laboratory evolution. We 
initiated λ populations with no mutations and allowed them to evolve and mutate at any of the 10 
focal sites used to construct the landscapes (Supplementary file 1a). For each treatment (Figure 2), 
we simulated 300 separate trials using a modified Wright- Fisher model with discrete generations and 
a fixed population size.

For each simulation, a new fitness landscape was constructed by assigning fitness values to all the 
genotypes (210=1024 genotypes). This was done in a way to account for error in estimating fitness 
and the error associated with imputing the values of missing data points. For the genotypes that had 
empirical fitness data available (Figure 1a and b), we did not simply average the values of the repli-
cate fitness measurements but instead we performed a bootstrapping protocol in order to account 
for the error in the fitness estimate. We randomly resampled from the four replicate measurements 
(with replacement) and then computed the mean of the four. Some genotypes were not present in all 
four replicates, in these cases we resampled as many times as there were replicates. Genotypes with 
only one replicate data point were, thus, assigned the same corresponding fitness values in all the 
runs of the simulations. Next, we imputed fitness of the genotypes that were missing from the empir-
ical landscape. A genotype with a missing fitness value was randomly chosen and assigned the mean 
of the fitness values of its nearest neighbors (one- mutation away genotypes) present in the land-
scape. This was iterated until the full genotypic space was complete. Note that the order in which 
genotypes are chosen can affect the value that is estimated for a given genotype. This is because as 
the landscape is filled in, each genotype will have more neighbors to draw values from. This means 
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that if a genotype is randomly chosen early, its fitness will be based on fewer neighbors than if it were 
chosen later, and its value will be slightly different. Since missing genotypes are randomly chosen in 
each iteration, the order will vary from one simulation to the next. This method introduces an extra 
source of variation in the simulation runs and captures uncertainty associated with the imputation of 
fitness values.

After constructing a complete fitness landscape, we evolved a λ population through repeated 
cycles of reproduction, selection, and mutation. For each generation, reproduction in the population 
was simulated by a multinomial sampling where the number of trials was equal to the population size 
 N   (set to ~6.3 × 109 based on Figure 4—figure supplement 2) and the success probability associated 
with a genotype i was given by  pi = niwi/

∑
i niwi  , where  ni  is the abundance of the genotype i, and 

 wi  is defined as the exponential of selection rate used in fitness landscape. Thus, the probability of 

 
(
k1, k2, k3, . . . km

)
  offsprings for genotypes  1, 2, 3, ..., m  would be:

 


 N

k1 k2 k3 . . . km


 m∏

i=1

(
niwi∑

j njwj

)ki

  

To incorporate mutations, all genotypes whose frequencies increased were mutated as per λ’s 
mutation rate (7.7 × 10–8 per base per replication Drake, 1991). Consider a genotype (say i) that 
increased in abundance and let the number of additional individuals produced by this genotype be 
denoted by  zi  (with  zi = ki − ni ). Each of these  zi  individuals retained its parent’s genotype with a prob-
ability  e−µ  (assuming a Poisson distribution for mutations). Otherwise, the individual was assigned to 
a random neighboring (i.e. mutant) genotype. Given λ’s mutation rate, the probability of multiple 
mutations is very small and was ignored here. We simulated this modified Wright- Fisher cycle of 
reproduction and mutation for 960 generations. It is difficult to know how many generations phages 
undergo because the evolved phages have a high spontaneous death rate (Petrie et al., 2018) and 
can also experience other sources of mortality. Given this, we decided to run the simulation for a 
somewhat arbitrary amount of time, 960 generations which corresponds to two doublings per hour 
for the 20- day experiment we are trying to replicate Meyer et al., 2012. This is likely an overestimate, 
which is unintuitively conservative for our purposes because more cycles will cause additional evolu-
tion and exploration of the fitness landscape, enhancing the possibility of OmpF+ evolution in the 
negative controls, and reducing our ability to detect treatment differences.

We evaluated whether λ evolved OmpF+ by examining the population for genotypes that had the 
necessary mutations to be OmpF+. Previous studies revealed that OmpF genotypes must have four 
mutations (Maddamsetti et al., 2018). They all possess two specific changes (A3034G) and (G3319A) 
and a third change that can occur at positions 3320 or 3321. For the 10 mutations we studied, T3321A 
is the only third mutation that satisfies this requirement, meaning all OmpF genotypes must have 
three specific changes (A3034G, G3319A, and T3321A). Many J mutations satisfy the last requirement 
(Maddamsetti et al., 2018), so we implemented what we call the ‘3+1’ rule where genotypes are 
designated as OmpF+ if they have the three necessary J mutations plus any additional mutation (see 
Supplementary file 1i). If any such genotype crossed the threshold of 5000 λ particles during the 
course of a simulation, the λ population in that run was marked to have evolved OmpF- function. We 
based the threshold value on the detection limit of OmpF+ genotypes in the original laboratory coevo-
lution experiments (~500 pfu/ml, see ‘Coevolutionary Replay Experiments’ section).

We implemented host switching by first evolving λ on the landscape measured with ancestral 
E. coli, stopping the simulation early, and quantifying the frequency of each λ genotype. Next, we 
would initiate evolution on the malT— for the remainder of the time but starting with genotypes at the 
frequencies recorded on the ancestral landscape. A total of 11 different coevolution treatments were 
run by varying how long λ evolved on the ancestral host landscape and malT— landscape (Figure 2). 
300 simulation trials were run for each treatment. We calculated error in the simulations in order to 
detect significant treatment differences by batching the runs into 30 and estimating the frequency 
of OmpF+ for each subset. This allowed us to calculate a 95% confidence interval using a Student’s 
t distribution for the frequency of OmpF+ evolution in each treatment, and then to use an ANOVA 
coupled with Tukey’s multiple comparison test to test for treatment differences.

https://doi.org/10.7554/eLife.76162
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Phage competition assays
To test whether λ’s path to innovation requires sequential adaptation to host genotypes isolated 
from different stages of their coevolution, we studied the dynamics of λ evolution in much more 
depth than previously reported. We focused on a single experimental replicate reported on in Meyer 
et al., 2012; ‘D7’ that evolved to be OmpF+ on the 12th day. Daily samples of the population were 
preserved, so we were able to revive phages from the full time series. We isolated 66 phages in total 
(Supplementary file 1c and d) and sequenced the full- length J gene from each in order to reconstruct 
the evolutionary dynamics (Figure 3a).

Next, we ran head- to- head competition experiments from key genotypes along the path to OmpF+, 
the WT and λ with a single J mutation (A), double (AB), and quintuple (ABCDE) (Figure 3b and c, 
Figure 3—figure supplement 1). Our first step was to mark key strains with a gene that caused the 
plaques to be visually distinguishable from unmarked phage. The gene is lacZα, which in the presence 
of a 5- bromo- 4- chloro- 3- indolyl- b- D- galactopyranoside (X- gal), Isopropyl-β-D- thiogalactoside (IPTG), 
and a host cell like DH5α that lacks lacZα, produces blue plaques. To incorporate lacZα into λ’s 
genome, we used a gene fusion of lacZα with λ’s R gene (Burmeister et al., 2016; Shao and Wang, 
2008). The fusion readily recombines into λ’s genome by the phage’s endogenous recombination 
system, λ-red (Ellis et al., 2001). The procedure is straightforward, infect an E. coli strain that has a 
plasmid with the lacZ fusion (strain: SYP042; plasmid: pSwtRlaczalphaZalpha +RZ xl1 Blue Amp Blue 
provided by Ing- Nang Wang, Albany, NY) and some fraction of the λ produced will have recombined 
with the plasmid. The recombinants are isolated by picking blue plaques. WT and AB were each 
marked. The marker has been shown to have a slight fitness effect; however, this would not signifi-
cantly influence our measurements of fitness since we observed such large differences between strains 
(Burmeister et al., 2016; Shao and Wang, 2008).

We competed three pairs of phages, WTlacZ vs A, A vs ABlacZ, and ABlacZ vs ABCDE, under two condi-
tions: with ancestral E. coli or malT–. Competitions were run for a single 24 hr period under identical 
conditions in which the phage evolved (Meyer et al., 2012). Initial λ density was between 104 and 
105 particles per ml and the relative frequency of the strains was sometimes skewed in order to start 
with more of the unfit genotype. Fitness differences were so large that the less fit genotype would be 
overwhelmed and its frequency undetectable if they did not start with a numerical advantage. ~5 × 
106 exponentially growing cells were inoculated to each flask (5 × 105 per ml). The cells were precon-
ditioned by growing them overnight in the competition medium. Three replicate competitions were 
run for each treatment. Phage densities of the unmarked and marked λ were determined by plating 
in typical soft agar plates, where we added 0.5 mg/ml of X- gal and 0.25 mg/ml IPTG to the molten 
soft agar. Densities were measured at t=0 and t=24 hr.

Host competition assay
This competition experiment tested the role of λ’s evolution plays in promoting the evolution of host 
resistance. We competed the ancestral host (REL606) against the evolved- resistant host (EcC4) in the 
presence of different λ genotypes that had increasing numbers of J mutations (Figure 3; WT (cI26), 
A (1- mutation), ABC (3- mutation), and A**C (4- mutation)). We initiated three replicate populations 
for each phage treatment. The competition was performed with identical conditions as the original 
evolution experiment and run for 4 hr to prevent λ from evolving during the competition assay. Cells 
were preconditioned in modified M9 glucose for 24 hr before the competition. As with λ, fitness 
was measured by observing the change in frequency of the competitors over time. Frequencies were 
determined by plating a subsample of the populations onto tetrazolium maltose (TMal) agar plates 
(Shuman and Silhavy, 2003). REL606 produces white colonies on the plates, while EcC4 produces 
smaller red colonies. Before plating, the phages were removed by centrifugation of the cells and then 
removing the supernatant that contained the phage. Cells were resuspended in saline solution and 
the centrifugation and resuspension were repeated once more.

Coevolutionary replay experiments
Would λ’s evolution to OmpF innovation proceed without initially evolving on an ancestral host? 
We tested this by replaying λ-E. coli coevolution but starting out with a host that already evolved 
resistance via a malT— mutation (strain LR01). We initiated 12 replicate populations with malT—, and 
another 12 with REL606 as a positive control. The replay experiment was run nearly identically to the 
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coevolution experiment performed by Meyer et al., 2012 with cI26 as the ancestor phage, and daily 
sampling was done to detect the presence of OmpF+ phage by spotting the phage on the bacterial 
lawn of lamB— cells (detection limit  ~500  pfu per ml) (Figure  4—figure supplement 1). The two 
differences were that the study was run longer (31 days) and daily estimates of λ populations were 
made (Figure  4—figure supplement 2). Twelve replicates were chosen in order to have enough 
statistical power to determine whether or not a treatment reduces the chances of OmpF+ evolution. 
In the previously reported study, only a quarter of populations (24 out of 96) evolved to use OmpF 
(Meyer et al., 2012); this result has also been replicated in our lab on two separate instances where 
3 out of 12 populations gained OmpF- function. Assuming a binomial distribution and a true success 
rate of 0.25 for λ’s OmpF+ evolution with the ancestral host, the probability of observing no replicate 
evolving to be OmpF+ in 12 replicate populations is 0.03167. Thus, we can conclude that malT— treat-
ment reduced λ’s ability to evolve the innovation as compared to when coevolution is initiated with 
ancestral host. Two isolates from each population were sampled on day 26, and the reactive region of 
their J genes were sequenced using the Sanger sequencing method.

We ran two additional replay experiments as a positive control for any unintended side effects of 
initiating an experiment with malT— host (LR01). A prediction from the fitness landscape simulation 
results was that if we started a replay with malT— and a phage isolated from a later- stage of the coevo-
lution, then the phage should evolve OmpF use. To test this, we genetically modified an OmpF+ λ by 
removing one mutation required for OmpF use (λ–1), and then a second (λ–2). The OmpF+ genotype 
was a lysogen (cI857) that we had previously edited in seven J mutations (Supplementary file 1f), 
which is reported about in Petrie et al., 2018. The two new edits were made using MAGE and the 
oligos are reported in Supplementary file 1j.

The replay experiments were run identically, except because of an oversight, these replays were 
run in a slightly different minimal glucose medium called Tris DM (compared to the original coevolu-
tion experiment run by Meyer et al., 2012). The key difference in the medium is the buffer, it is a Tris 
buffer, not a phosphate buffer. Both mediums impose carbon limitation and have the same concen-
tration of the single carbon source, glucose, and so population and evolutionary dynamics should not 
have been affected. We confirmed in an additional replay experiment that the medium does not affect 
the timing or repeatability of OmpF+ evolution.

Data and code availability
Amplicon sequencing data used to generate fitness landscapes in this study have been deposited in 
the NCBI Sequence Read Archive under BioProject PRJNA646809. The code and data that support 
the findings of this study are available at https://github.com/anigupta12/fitness-landscape-paper, 
copy archived at swh:1:rev:19292491a2768444bd009da8a3de6d25ce8ab18c (Gupta, 2021).

Sharing of biological material requires a material transfer agreement, described at http://blink. 
ucsd.edu/research/conducting-research/mta/index.html.
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Appendix 1
Fitness effect of synonymous mutations used as watermarks in MAGE
We designed two watermark mutations for each focal mutation. Watermark mutations are synonymous 
mutations that fall within a few nucleotides of the focal mutation. These edits improved our ability to 
detect the presence of focal mutations within the MAGE library (Supplementary file 1i). In principle, 
these watermark mutations should not affect the fitness of λ because the introduced mutations 
do not change the amino acids. However, we designed two different watermarks in order to test 
whether or not they influence λ fitness. To test for fitness effects of the synonymous mutations, 
we evaluated the fitness of genotypes with just a single focal mutation, and then we split the count 
data from the competition experiments into two, one for watermark ‘1’ and a second pool for ‘2’. 
We calculated the fitness of each group and compared their means using a t- test. The analysis was 
limited to just fitness measurements made for the treatment with the ancestral host because the 
single mutants did poorly on malT— host and many dropped below our limit of detection during the 
competitions. We were also only able to run the analysis on 7 out of 10 mutations because in three 
cases only one watermark was represented in the final counts data. We found that the fitness did 
not depend on the neutral marker for all seven using a Bonferroni corrected alpha value of 0.0071 
(Supplementary file 1l). However, one of the seven was significant based on the uncorrected alpha 
value of 0.05. The effect on the selection rate was estimated to be 0.9947 with 95% confidence 
interval of 0.4758–1.5136. This value falls well within the error associated with fitness estimates 
(Figure 1—figure supplement 4). Because of our uncertainty of whether there was an effect of this 
synonymous mutation, and because the effect falls within normal levels of error, we did not take 
steps to correct for this possible effect.
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Appendix 2
Simulation results when only using genotypes present in both the 
ancestral and malT– fitness landscapes
One possible complication with the fitness landscape analyses is that the malT– landscape is based 
on a subset of the ancestral landscape (131 vs 580 out of 1,024 possible genotypes). This could 
lead to potentially spurious comparisons of evolution on the two hosts. To control for this, we re- 
ran the simulations starting with only the genotypes that were present in both the landscapes. 
While the frequencies of OmpF+ populations did shift with this new analysis, the main result that 
switching landscapes enhances the frequency of OmpF+ evolution remained statistically significant 
(Figure 2—figure supplement 2d). The increased frequency in ancestor- only treatment stems from 
the increased stochasticity in estimating the landscape since more genotypes are imputed in panel 
d than a- c. This stochasticity leads to more OmpF+ evolution because the increased randomness in 
landscape formation increases the chances of producing viable pathways to OmpF use. Interestingly, 
the ancestral landscape OmpF+ frequency is equivalent to malT– in panel d. This similarity suggests 
that the frequency of OmpF evolution for malT– may be artificially high, which would mean that in 
reality there may be greater differences between this treatment and the fluctuating treatments.

Simulation results when shifting is done between landscapes of the 
same host
Each time we impute fitness values of missing genotypes in a simulation run, a slightly different 
landscape is produced. This procedure raises the question of whether the increased frequency 
of OmpF+ in the shifting landscape simulations is due to structural differences between the two 
landscapes, or the random differences created by the imputation technique. To test this, we 
repeated simulations as previously discussed; however, this time we shifted to a newly generated 
landscape created from the same host- landscape data. OmpF+ did not evolve when the shift was 
made between two ancestral landscapes. λ did evolve OmpF function in some replicates when the 
switching was made between two malT— landscapes; however, the frequency was significantly less 
than when the shift was made from ancestor to malT— (Figure 2—figure supplement 2e and f). 
Lastly, to control for the sparser landscape of malT— compared with the ancestor, we shifted between 
two ancestral host landscapes that were generated using only fitness values of genotypes present 
in both landscapes. We found the same qualitative result as for the malT— to malT— landscape shift 
(Figure 2—figure supplement 2g and h). These results show that the structural differences between 
the two host landscapes encourage OmpF+ evolution above and beyond what results from the noise 
associated with the imputation procedure.

https://doi.org/10.7554/eLife.76162

	Host-­parasite coevolution promotes innovation through deformations in fitness landscapes
	Editor's evaluation
	Introduction
	Results
	λ’s fitness landscape at different stages of coevolution
	The role of shifting landscapes in promoting λ’s innovation
	Reconstructing coevolution in an experimental population
	Evolutionary replay experiments

	Discussion
	Ideas and speculation

	Materials and methods
	Bacterial and phage strains
	Media
	Isolation and culturing techniques
	Estimation of phage densities
	Sequencing for analyses of mutations in ﻿J﻿
	Calculation of selection rate using Malthusian parameter
	Construction of λ genomic library using MAGE
	Empirical fitness landscape resolved through one-pot competition experiment
	Sequencing
	Post-sequencing analysis and construction of fitness landscape
	Statistical analysis of fitness landscapes
	Simulation of λ’s evolution on fitness landscapes
	Phage competition assays
	Host competition assay
	Coevolutionary replay experiments
	Data and code availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Fitness effect of synonymous mutations used as watermarks in MAGE

	﻿Appendix 1﻿
	Simulation results when only using genotypes present in both the ancestral and ﻿malT﻿﻿–﻿ fitness landscapes
	Simulation results when shifting is done between landscapes of the same host

	﻿Appendix 2﻿


