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Abstract
Genes that undergo horizontal gene transfer (HGT) evolve in different genomic backgrounds. Despite the ubiquity of 
cross-species HGT, the effects of switching hosts on gene evolution remains understudied. Here, we present a frame-
work to examine the evolutionary consequences of host-switching and apply this framework to an antibiotic resist-
ance gene commonly found on conjugative plasmids. Specifically, we determined the adaptive landscape of this gene 
for a small set of mutationally connected genotypes in 3 enteric species. We uncovered that the landscape topog-
raphies were largely aligned with minimal host-dependent mutational effects. By simulating gene evolution over 
the experimentally gauged landscapes, we found that the adaptive evolution of the mobile gene in one species trans-
lated to adaptation in another. By simulating gene evolution over artificial landscapes, we found that sufficient align-
ment between landscapes ensures such “adaptive equivalency” across species. Thus, given adequate landscape 
alignment within a bacterial community, vehicles of HGT such as plasmids may enable a distributed form of genetic 
evolution across community members, where species can “crowdsource” adaptation.

Key words: horizontal gene transfer, genomic background, epistasis, protein evolution, beta-lactamase, 
Enterobacteriaceae, adaptive landscape.
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Introduction
Genes transferred horizontally between bacterial species 
evolve in dramatically different genomic backgrounds as 
they move between hosts (Redondo-Salvo et al. 2020). 
This contrasts with genes that evolve under strict vertical 
inheritance, where the genomic backdrop remains rela-
tively constant over time. Although horizontal gene trans-
fer (HGT) is prevalent and significant in bacterial 
evolution, the influence of host-switching on the evolution 
of genes that undergo HGT (hereafter “mobile genes”) has 
received little attention.

To assess the adaptive consequences of HGT, it is crucial 
to understand whether the fitness effects of mutations in 
mobile genes change depending on the host harboring the 
genes. We term this dependence a “gene-by-host inter-
action” (hereafter G × H), where mutational fitness effects 
depend in sign or magnitude on the entire host genomic 
background (for a more complete explanation of this ter-
minology see supplementary section S1, Supplementary 
Material online). We emphasize that we focus on 

mutations within mobile genes (i.e. not within the host 
chromosome). The existence and form of G × H for such 
mutations may have evolutionary consequences for mo-
bile genes, similar to those found in prior work on other 
interactions such as gene-by-gene (G × G) and gene-by- 
environment (G × E) interactions (Weinreich et al. 
2006; Lindsey et al. 2013). For instance, if beneficial mu-
tations in one host have similar effects in other hosts (i.e. 
negligible G × H), a species may effectively “crowd-
source” the mobile gene’s adaptive evolution. That is, a 
focal species that transfers the mobile gene to another 
species and subsequently reacquires it can benefit from 
adaptive genetic changes that occurred while in the se-
cond host. Conversely, if beneficial mutations in one 
host are dissimilar in others (i.e. non-negligible magni-
tude or sign G × H), the opportunity for HGT-driven 
crowdsourcing decreases.

In order to gauge the impacts of G × H on mobile gene 
evolution, we leverage the classical framework of the “fit-
ness landscape,” which maps a network of mutationally 
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connected genotypes to fitness (Wright 1932; de Visser 
and Krug 2014; Bank 2022). G × H manifests as differences 
in the landscape topography across hosts. To illustrate the 

evolutionary consequences of different forms of G × H, we 
explore a hypothetical example of 2 host species and 3 
variant sites in a mobile gene. In Fig. 1a, the landscapes 
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Fig. 1. Effect of HGT on mobile gene evolution with hypothetical host-specific landscapes. We consider a landscape for 3 mutations in a mobile 
gene in 2 hosts (red and blue). a, c, e) The adaptive landscape is plotted as the resistance level of genotypes (taken as a proxy for fitness) as a 
function of the number of mutations on a wild-type (WT) background. Each of the 23 = 8 genotypes is represented by a circle divided into 
“wedges” equal to the number of sites (3 in this case) where the evolved variant at a site is indicated by shading the corresponding wedge. 
The genotypes differing by a single mutation are connected by edges (lines colored to match the host). The effect of a mutation (beneficial 
or deleterious) is shown with a solid or dashed line, respectively. a) The landscapes of the red (left panel) and blue (right panel) host are rea-
sonably well-aligned, as mutations have roughly similar effects across species and there are no mutations that exhibit opposite fitness effects in 
the 2 hosts. b) Assuming selection operates rapidly relative to mutation, we can represent each beneficial mutation’s fixation as a step up in the 
level of drug resistance (vertical arrows). In an evolutionary trajectory within a population of the red host (left panel), after 3 mutational events, 
the population reaches the adaptive peak, from which all mutations are detrimental. Despite HGT (vertical purple double-ended arrow) to and 
from the blue host preceding and following the second mutational event (right panel), the population still reaches the adaptive peak because the 
blue and red host landscapes are aligned (part a). This scenario illustrates evolutionary crowdsourcing, where the red host can benefit from the 
transient adaptation in the blue host. c) The second scenario has rampant sign G × H where mutational steps are beneficial (solid lines) in the 
red host (left panel) but are deleterious (dashed lines) in the blue host (right panel). d) This is an example of evolutionary insourcing, where 
transient adaptation in the blue host hinders evolutionary progress in the red host. e) In this last example, there are only a few mutational steps 
with sign G × H, where the location of these mutations results in a suboptimal fitness peak in the red host landscape, which is absent in the blue 
host landscape. f) Evolution in the red host may lead to a suboptimal evolutionary endpoint (left panel). However, adaptation in the blue host 
can effectively release the red host from the suboptimal endpoint (right panel), a scenario that highlights evolutionary outsourcing.
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of the blue and red hosts are generally aligned with no in-
stances of sign G × H (where the sign of a mutational effect 
is opposite in the 2 hosts). In this scenario, HGT between 
the hosts does not impact the red host’s evolutionary end 
point relative to adaptation without HGT (Fig. 1b). These 
conditions enable evolutionary crowdsourcing, where the 
red host can take advantage of the transient adaptation in 
the blue host. In Fig. 1c, the 2 host landscapes are mirror 
images, indicating rampant sign G × H. Here, adaptation 
in the blue host is counterproductive to evolutionary pro-
gress in the red host (Fig. 1d). This scenario highlights evo-
lutionary “insourcing,” where the red host makes more 
progress without HGT. A more subtle case is found in 
Fig. 1e where a handful of mutations exhibit sign G × H 
creating a suboptimal fitness peak in the red host land-
scape that is absent in the blue host landscape (there is ac-
tually pronounced G × G × H interaction here). In this 
case, adaptive evolution in the blue host explores addition-
al regions of genotype space, and HGT introduces genetic 
variation from the blue host releasing the red host from a 
suboptimal endpoint. This scenario highlights evolution-
ary “outsourcing,” where HGT can qualitatively benefit 
the evolutionary trajectory in the red host relative to adap-
tation without HGT (Fig. 1f). These simple cases illustrate 
that comparing landscape topographies across hosts is the 
first step in determining how cross-species HGT may influ-
ence mobile gene evolution.

To explore how the landscape topography shifts with host 
background, it is necessary to uncover the existence and form 
of G × H by measuring the fitness effect of mutations in a mo-
bile gene across different hosts. Previous studies found various 
forms of host-dependent effects for mutations introduced 
into chromosomal genes (Lind et al. 2010, 2017; Guerrero 
et al. 2019; Ogbunugafor and Eppstein 2019) However, the 
genes experiencing frequent host-switching (via HGT) are 
those residing on mobile genetic elements such as conjuga-
tive plasmids (Redondo-Salvo et al. 2020). Host-specific ef-
fects have been shown for the introduction of a plasmid (a 
type of G × H where the focal “mutation” involves going 
from a plasmid-free to plasmid-bearing state, see Alonso- 
Del Valle et al. 2021) and variation in plasmid gene content 
(e.g. G × H where the focal mutation involves a deletion of 
a gene, see Benz and Hall 2023). It is surprising that no atten-
tion, to our knowledge, has been given to host-specific effects 
of multiple intragenic mutations affecting the function of a 
protein encoded on a plasmid, where G × H interaction 
may be very relevant given that it could change how genes 
on mobile elements evolve over time.

Here, we experimentally constructed a portion of a mo-
bile gene’s landscape in 3 Enterobacteriaceae pathogens: 
Escherichia coli, Salmonella enterica, and Klebsiella pneu-
moniae. This gene, known as the blaTEM gene, naturally re-
sides on conjugative plasmids in enteric bacteria (Barlow 
2009). It encodes a TEM-type beta-lactamase and has 
served as a model system for understanding protein evolu-
tion (Weinreich et al. 2006; Salverda et al. 2011). 
Specifically, we assembled a landscape featuring all combi-
nations of 5 resistance-increasing mutations, building 

upon prior work by Weinreich et al. (2006) who used these 
mutations to asses intragenic interactions (i.e. G × G) in the 
blaTEM gene in E. coli. Our study aimed to investigate the pres-
ence and nature of G × H, as well as the topographical align-
ment of this gene’s landscape across different host species. 
Using evolutionary simulations involving adaptive walks on 
both empirically gauged and randomly generated landscapes, 
we assessed the relationship between cross-species landscape 
alignment and the effect of HGT on mobile gene evolution 
(e.g. crowdsourcing).

Experimental Approach
We used a high-throughput multiplexed assay to assess 
the host-specific landscape topography of a set of 
plasmid-borne antibiotic resistance blaTEM genotypes. 
Our approach was inspired by recent advances that allow 
for parallel assessment of genotype fitness (Fowler and 
Fields 2014). Each plasmid genotype was mapped to the 
level of resistance it conferred in the host (a proxy for 
fitness), and these data points collectively formed the “re-
sistance” landscape. To assess resistance levels, we first en-
gineered each plasmid genotype and tagged it with 
unique barcodes before transforming it into a given 
host (Fig. 2a). Next, we pooled transformants to create 
the initial host library, and incubated this library in a ser-
ies of tubes with increasing antibiotic concentrations 
(Fig. 2b). We approximated growth rates for each geno-
type at different antibiotic concentrations using pre- and 
post-selection cell counts and barcode frequencies (Fig. 2c). 
From these estimates, we generated a dose–response curve, 
using the curve’s inflection point as our measure of resistance 
(supplementary Fig. S1, Supplementary Material online). 
Collectively, the resistance levels for the set of plasmid geno-
types determined the topography of the landscape for the gi-
ven host (Fig. 2d). By implementing this procedure across 
multiple bacterial species, we could compare landscapes 
between different hosts (see Materials and Methods for add-
itional details).

Results
Experimental Host-Specific Landscape Construction 
Shows Minimal Gene-by-Host Interactions (G × H) in 
a Mobile Gene
The plasmid genotype set that constituted the resistance 
landscape consists of all combinations of 5 particular muta-
tions to the TEM-1 genotype of the blaTEM gene (32 nodes 
in Fig. 3a). Of the 80 possible single-step mutations connect-
ing 2 plasmid genotypes in our set, only 8 exhibited sign G ×  
H across some combination of the 3 enteric species (these 8 
mutations are indicated by the edges split into red, blue, and 
yellow pieces that connect distinct nodes in Fig. 3a). These 
mutations exhibiting G × H changed resistance by only small 
amounts (purple, green, and orange points near the origin in 
Fig. 3b). In contrast, all larger effect mutations exhibited simi-
lar increases in resistance across species (brown points in 
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Fig. 2. A multiplexed protocol for constructing host-specific landscapes. a) A focal gene (rectangular arc) on a plasmid is mutated (gray notches) 
to construct each plasmid genotype of interest. To track the plasmid genotypes in the experiment, each genotype is tagged with 3 unique bar-
codes (black notches) then transformed into each species (“red” and “blue” hosts). b) To assess the resistance level of each plasmid genotype, all 
transformants within a species are pooled to create the initial bacterial library and inoculated into an antibiotic gradient (the darker shades of 
gray correspond to higher antibiotic concentration in the growth medium). Samples are collected before and after incubation to determine 
barcode frequency using deep sequencing and the total population density using dilution plating. c) The growth rate specific to each plasmid 
genotype and drug concentration is calculated using the product of total population density and barcode frequencies associated with each 
plasmid genotype before and after selection at a given concentration. For each plasmid genotype, the estimated growth rates across the anti-
biotic gradient yield a dose response curve by fitting a log-logistic function, where the resistance level is given by the inflection point of the curve 
(indicated by the dashed vertical line). d) The landscape topography for each host is given by the collection of the set of plasmid genotypes’ 
resistance levels (the x axis values for inflection points in part c). The connections between the 3 highlighted genotypes from part (c) are shown 
in the host-specific color.
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Fig. 3. Multi-host landscapes of a mobile gene. a) The resistance landscape for the blaTEM gene encoding a beta-lactamase was constructed for 3 
enteric species: Escherichia coli (red), Klebsiella pneumoniae (blue), and Salmonella enterica (yellow), where 5 mutations (g4205a, A42G, E104K, 
M182T, and G238S) are shown as shaded wedges in each node. Lowercase or uppercase letters denote single nucleotide polymorphism in the 
promotor region or amino acid substitution, respectively. The white-wedged circle represents the TEM-1 genotype with low cefotaxime resist-
ance, whereas the gray-wedged circle represents the most resistant genotype in all species. Mutational steps that exhibited sign G × H are shown 
as split multicolor edges with 1 arrow for each host (red, blue, and yellow), with beneficial, neutral, and deleterious effects denoted by solid, 
dotted, or dashed lines, respectively. Mutational steps with no sign G × H are shown with a single brown edge with the corresponding effect 
(solid, dotted, or dashed). In (b), the effect of each mutational step (80 in total) on the resistance level (akin to the slope in part c) is compared 
across each species pairing. The relative resistance level, RRL(i, j) = log√2 (RLi/RLj), involves comparing the resistance level (RL in μg ml−1) of a 
focal genotype i to a different genotype j. The plotted points compare the effects of mutations in the relevant species, where genotypes i and j 
differ by a single mutation. The mutational steps that exhibited sign G × H (split edges in part a) had small effects (purple, green, orange dots 
near the origin in the top, middle, and bottom panel, respectively) compared to the mutational steps exhibiting no sign G × H (brown dots). In 
(c), the landscapes for the 3 species were largely aligned given the low number of mutational steps that exhibited sign G × H and their small 
effects. Here, the RRL(i, j) is computed by comparing the resistance level (RL) of a focal genotype i to the TEM-1 genotype j (which has no muta-
tions) for each respective host.
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Fig. 3b). Thus, we concluded that the host-specific landscapes 
were generally aligned, as shown by the structural similarity 
among the diagrams in Fig. 3c.

Simulations With Empirical Landscapes Reveal 
Evolutionary Crowdsourcing of a Mobile Gene
Topographical congruence between bacterial species po-
tentially translates to crowdsourcing of the adaptive evo-
lution of a mobile gene (as illustrated in Fig. 1a and b). 
However, as seen in Fig. 1e and f, even a few mutations ex-
hibiting sign G × H can alter the evolutionary trajectory of 
a mobile gene. To assess the implications of our minor 
topographical differences, we simulated evolution as an 
adaptive walk (gray traces in Fig. 4a) on our empirically 

determined landscapes (Orr 2005; Fragata et al. 2019). 
Briefly, each simulation involved multiple rounds of sto-
chastic mutation and selection for resistance. We tracked 
the average level of resistance without HGT (over 1,000 re-
plicates) as a baseline for genetic evolution within a single 
host species (Fig. 4a, e, and i). To determine the effect of 
host-switching via HGT on gene evolution, we designed si-
mulations over 3 distinct periods, where each transition to 
a different period coincided with a change in host (Fig. 4b, 
c, f, g, j, and k). In the first period, the mobile gene evolved 
in one species (hereafter the “focal” host) through several 
rounds of mutation and selection. An HGT event then 
moved the gene to another species (hereafter the “transi-
ent” host) commencing a second period. Finally, another 
HGT event returned the gene to the focal host initializing 
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lations based on empirically derived landscapes of the mobile blaTEM gene (Fig. 3) to examine adaptive walks mediated by stochastic mutation 
and strong selection. In (a), replicate adaptive walks are depicted with gray lines. Subfigures (a, e, i) establish baseline conditions with no HGT, 
illustrating how the average resistance level increases (over 1,000 replicates with standard error given by the shading) due to gene evolution in E. 
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Kosterlitz et al. · https://doi.org/10.1093/molbev/msad237 MBE

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/11/m
sad237/7336723 by U

niversity of W
ashington user on 22 N

ovem
ber 2023



a third and final period. Despite time evolving in a transi-
ent species, the final level of resistance for the same total 
duration of evolution was statistically indistinguishable 
from the scenario with no HGT, a pattern observed for 
every possible focal-transient pair with our 3 species 
(Fig. 4d, h, and l). This result was robust to alterations 
of multiple simulation parameters (supplementary Figs. S2 
to S4, Supplementary Material online). Therefore, with our 
empirically gauged landscapes, our species can effectively 
crowdsource the evolution of antibiotic resistance.

Simulations With Artificial Landscapes Indicate 
Misalignment Impedes Evolutionary Crowdsourcing
To delve further into the interplay between landscape 
alignment across species and the impact of HGT on mo-
bile gene evolution, we extended our simulation frame-
work to randomly generated pairs of fitness landscapes. 
These artificial landscapes retained key features of the 
empirically derived landscapes to facilitate direct com-
parison. Specifically, we preserved the number of muta-
tions, fixing the genotype with no mutations at the 
lowest fitness level and the genotype with all 5 mutations 
at the highest. As a baseline, we generated a single 
non-epistatic (smooth/additive) landscape where the fit-
ness effects of each mutation were randomly assigned 
and independent of context. This additive landscape 
served as the common starting point from which the 
pair of landscapes corresponding to the 2 host species 
were generated. To introduce variation between the 
hosts (i.e. G × H), we perturbed the fitness values for a 
subset of randomly selected genotypes, independently 
for each host species. This approach resulted in pairs of 
landscapes with varying degrees of misalignment, ranging 
from well-aligned (as depicted in Fig. 5a and e) to poorly 
aligned (Fig. 5c and g). The fitness effects of all mutations 
in one species can be represented as a function of their 
corresponding effects in the other host species using a 
scatterplot (Fig. 5e and g). If a point corresponding to a 
mutation lands on the identity line, it must have equiva-
lent effect across hosts. However, the displacement of a 
point from the identity line indicates the presence of 
G × H, signifying a disparate effect of the relevant 
mutation across species. To quantify total landscape 
misalignment, we used a simple metric that summed 
the perpendicular distances of points from the identity 
line. Simulations both with and without HGT on differ-
ent pairs of landscapes yielded evolutionary outcomes 
of insourcing, outsourcing (Fig. 5d), and crowdsourcing 
(Fig. 5b). Notably, as the degree of misalignment be-
tween the pair of landscapes increased, we observed a sig-
nificant reduction in the frequency of crowdsourcing 
outcomes (Fig. 5f, P < 10−6 by a permutation test described 
in supplementary Supporting Material, Supplementary 
Material online). Furthermore, our empirically derived land-
scapes fell within the range of misalignment values where 
the crowdsourcing outcome was most likely to occur 
(gray square in Fig. 5f).

Discussion
HGT serves as a critical driver of bacterial evolution, enab-
ling organisms to rapidly adapt to new challenges by ac-
quiring genetic elements from other species. Despite the 
extensive research recognizing the prevalence of HGT 
and the relevant gene cargo transferred, the consequences 
of host-switching for the evolution of the transferred genes 
themselves (i.e. mobile genes) has been underexplored. 
Our study, to our knowledge, provides the first examin-
ation on the potential role of gene-by-host interactions 
(G × H) in the evolution of proteins encoded by mobile 
genes. Through our conceptual framework and simulation 
analysis, we demonstrated that the topographical congru-
ence of landscapes of different host species strongly influ-
ences the evolutionary trajectories of mobile genes. 
Through our empirical case study of a mobile gene across 
3 bacterial pathogens, we found minimal G × H which en-
abled evolutionary “crowdsourcing.” Our results not only 
substantiate the potential for HGT to serve as a conduit 
for collaborative evolution among bacterial species, but 
also highlight the role of landscape alignment in shaping 
the adaptive consequences of HGT.

Our study has limitations in both the landscape recon-
struction and evolutionary simulation. First, we analyzed a 
limited set of mutations in 1 gene in 3 closely related species. 
Thus, our results may not be applicable to all mutations, 
genes, or species. Second, our landscapes are based on resist-
ance, which correlates strongly with competitive fitness for 
certain environments (Gullberg et al. 2011; Toprak et al. 
2011; Artemova et al. 2015; Schenk et al. 2022). However, 
a genotype’s fitness can be influenced by factors other 
than resistance (e.g. baseline growth rate in drug-free condi-
tions) and these factors may not correlate with drug resist-
ance (Chevin 2010; Concepción-Acevedo et al. 2015; 
Ogbunugafor et al. 2016; Das et al. 2020). Third, our evolu-
tionary simulations made several simplifying assumptions; 
e.g. a series of selective sweeps comprised each adaptive 
walk and host-switching occurred at a few defined times. 
However, natural bacterial communities are often more 
complex, with multiple genotypes competing within and 
across species, and continual potential for transfer. The out-
comes of these competitions as well as the opportunities for 
HGT depend on the distribution of the relevant species 
across a potentially heterogeneous environment (e.g. a mul-
tispecies biofilm in a drug gradient). Additionally, the simu-
lations did not account for some unique plasmid features 
such as multiple copies per cell, fitness costs, and basic rates 
of conjugation and plasmid loss. These features can vary 
with host context (De Gelder et al. 2007; Dimitriu et al. 
2019; Kosterlitz et al. 2022) and may influence HGT oppor-
tunities and competitive outcomes. Lastly, while our mis-
alignment metric shows a significant correlation with the 
evolutionary outcome, it represents just one of many pos-
sible approaches (e.g. an alternative metric would be the 
fraction of mutations exhibiting sign G × H, see de Vos et 
al. 2015). In future work, a more refined cross-host align-
ment metric could be formulated particularly if landscape 
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Fig. 5. Landscape misalignment decreases the likelihood of evolutionary crowdsourcing. To investigate the influence of cross-species landscape 
misalignment on the role of HGT in gene evolution, we generated artificial landscapes with varying degrees of misalignment between 2 hosts: a 
focal host (F) and a transient host (T) (see Materials and Methods for our procedure). a) The landscape for each host included every combination 
of 5 mutations (the 25 = 32 genotypes are shown as points here). The genotype with no mutations always had the lowest fitness and the genotype 
with all 5 mutations had the highest fitness. In this figure, genotypes that correspond to fitness peaks in at least one host’s landscape are emphasized 
with distinct colors. The 2 landscapes here exhibit low misalignment, with a single common peak (light blue point) and only 1 mutational step that 
exhibits sign G × H (solid black line in the F landscape, dashed black line in the T landscape). b) The full distribution of fitness in the focal host at the 
end of evolutionary runs is shown for many replicate simulations. Using the same setup as in Fig. 4, these runs occurred either exclusively in the focal 
host (denoted “F”) or incorporated HGT events from the focal to the transient host and back, such that the middle third of the simulation occurred 
in the transient host (denoted “F-T”). For our aligned landscapes, these endpoint fitness distributions are very similar (with the global peak equally 
well represented both with, and without, HGT). This is a pattern of evolutionary crowdsourcing, symbolized by a red diamond. Conversely in (c), we 
present a landscape pair with high misalignment, characterized by multiple, mostly host-specific peaks (lavender, teal, and green-shaded points) and 
many mutational steps that exhibit sign G × H (black edges). In this case (d), the evolutionary simulations revealed evolutionary outsourcing, as 
marked by the tan triangle. Here, evolution in the focal host alone (left graph in part c) often led to evolutionary endpoints where the population 
became stuck on a suboptimal peak (lavender or green-shaded points). However, evolution with HGT between the focal and transient host led to a 
greater number of replicate runs reaching the global peak (i.e. more weight in the part of the distribution corresponding to the light blue dots in 
“F-T” vs. “F”). e) To calculate cross-species landscape misalignment, we followed 3 steps: (i) we plotted the effect of every mutation in one host as a 
function of its effect in the other (note in some cases, data points overlap), (ii) calculated the distance between the point for mutation i and the 
identity line (di), and (iii) summed these distances across all mutations (

􏽐
di). For the aligned landscapes in part (a), most points do not stray far 

from the identity line and the misalignment score is low (i.e. this graph corresponds to a low position on the x axis in part f). g) On the other hand, 
the misaligned landscapes in part (c) yields points scattered further away from the identity line, leading to a high misalignment score (a high pos-
ition on the x axis in part f). f) Including the 2 pairs of landscapes shown in parts (a) and (c), we ran evolutionary simulations on 1,250 pairs of 
landscapes with a variety of misalignment scores. These landscape pairs were grouped into bins of 0.5 increments (see Materials and Methods 
for details). For each bin, we tracked the proportion of landscapes pairs for which the incorporation of HGT generated crowdsourcing (as in 
part b), insourcing, or outsourcing (as in part d). We observe a significant inverse relationship between landscape misalignment and the frequency 
of evolutionary crowdsourcing. The bin for the misalignment scores for our empirical landscapes is indicated on the x axis with a gray square.
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features like ruggedness (or higher-order interactions, such 
as G × G × H) prove to be predictive of the impact of HGT 
on mobile gene evolution. More generally, future work 
should consider all of the above limitations to enrich empir-
ical, theoretical, and simulation frameworks.

Despite these noted caveats, we highlight the possibility 
that evolutionary adaptation of a mobile gene can be a 
cosmopolitan affair in a microbial community, where the 
progress made in one species translates to progress in an-
other. We emphasize that the availability of widespread 
evolutionary crowdsourcing through HGT will depend 
on the prevalence and magnitude of G × H and thus over-
all landscape misalignment (Fig. 5). Interestingly, for our fo-
cal mobile gene, the frequency of sign G × H and the effect 
sizes of all G × H interactions were surprisingly low given 
the documented number of context-dependent muta-
tions in other studies (De Gelder et al. 2007; Apjok et al. 
2019; Guerrero et al. 2019; Ogbunugafor and Eppstein 
2019; Gama et al. 2020; Dunn et al. 2021; Benz and Hall 
2023). This pattern highlights a connection to the “com-
plexity hypothesis,” which suggests that proteins encoded 
by genes experiencing higher rates of HGT are less con-
nected to other proteins in the cell (Jain et al. 1999; 
Novick and Doolittle 2019). This could result in fewer op-
portunities for host-dependencies and less G × H for these 
more “modular” mobile genes. To further explore the rela-
tionship between the rate of HGT and the availability of 
evolutionary crowdsourcing, it will be necessary to con-
struct landscapes for additional genes undergoing different 
rates of HGT across the same set of species.

Our findings expand upon the existing body of knowl-
edge surrounding context-dependent genetic interactions, 
where the effects of mutations can vary based on specific 
contextual factors (Eguchi et al. 2019). These contextual 
factors can be of different forms, such as variations within 
the same gene (intragenic epistasis), within the same gen-
ome (intergenic epistasis), in a different genome (interge-
nomic, or interspecific, epistasis), or in environmental 
states (G × E interaction) (Gillespie 1984; Orr 2002; Wade 
2007; de Vos et al. 2013; Flynn et al. 2013; Lindsey et al. 
2013; Bank et al. 2016; Yi and Dean 2019; Bank 2022; 
Gupta et al. 2022). In our study, we focus on G × H interac-
tions, which can be interpreted in multiple ways. These 
could be viewed as a specific type of G × G, where 
the host chromosome is the contextual (G) factor. 
Alternatively, G × H can be conceptualized as a form of 
G × E, where the host serves as the environmental context 
(E) for the mobile gene. Our simulation was designed with 
the G × E perspective in mind, treating rare HGT events as 
environmental changes (for a more complete explanation 
of the connections between G × H, G × G, and G × E, see 
supplementary section S2, Supplementary Material online). 
However, G × H interactions resist easy categorization 
within either the G × G or G × E frameworks. For a mobile 
gene encoded on a plasmid, HGT can dramatically alter the 
host context by moving the plasmid to an entirely different 
species. This is in sharp contrast to the subtler changes caused 
by mutations, which align with the conventional G × G 

framework and are often associated with plasmid–host co-
evolution. These scenarios differ not only in the scale of con-
textual alteration but also in the underlying processes that 
drive these changes—specifically, mutation versus HGT. 
Each of these processes is characterized by unique rates, me-
chanisms, and ecological dependencies. Therefore, recognizing 
the unique characteristics of G × H could pave the way for the 
development of more comprehensive and predictive models 
for gene evolution.

In summary, we introduced a novel framework to inves-
tigate the molecular evolution of mobile genes—a highly 
relevant subset of genes evolving with an additional 
mode of genetic inheritance: HGT. We found that for a 
small set of mutations in a common mobile gene, the land-
scape topography and thus evolutionary outcomes are 
largely aligned across closely related species. These findings 
suggest that adaption of mobile genes in one species can 
translate to adaptation for another species. This suggests 
that conjugative plasmids and other vehicles of cross- 
species HGT can enable a distributed form of genetic evo-
lution across bacterial communities, where any particular 
species can draw upon genetic variation from other com-
munity members and adapt through “crowdsourcing.”

Materials and Methods
General Reagents
Unless otherwise noted, all enzymes and related buffers 
were obtained from New England Biolabs. Plasmid isola-
tion kits were obtained from Qiagen. DNA cleaning and 
gel extraction kits were obtained from Zymo Research. 
Oligonucleotide primers were obtained from Integrated 
DNA Technologies. Sanger sequencing was conducted by 
GENEWIZ from Azenta Life Sciences.

Genotype Construction and Barcoding
We mutated the pBR322 plasmid, which contains the 
blaTEM and tetA genes, using a Site-Directed Mutagenesis 
Kit. Plasmid maintenance was ensured by supplementing 
the culture medium with 15 μg ml−1 tetracycline. The 
starting genotype for the blaTEM gene was TEM-1, and all 
combinations of 5 mutations (g4205a, A42G, E104K, 
M182T, and G238S) were generated using custom primers 
(supplementary table S1, Supplementary Material online). 
All mutations (supplementary table S2, Supplementary 
Material online) were confirmed with Sanger sequencing 
(supplementary table S3, Supplementary Material online). 
Each beta-lactamase genotype was associated with 3 
unique molecular barcodes. For barcoding, we modified 
the pBR322 backbone to incorporate Nsil and NcoI restric-
tion sites downstream of the blaTEM gene. Double-stranded 
barcoded fragments were prepared using 2 oligonucleo-
tides (supplementary table S4, Supplementary Material
online) and inserted into the digested vector through liga-
tion. 3 colonies were sequenced to confirm barcode iden-
tity for each genotype, resulting in a library of 96 
engineered plasmids. To create host-specific libraries, the 
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96 engineered plasmids were transformed into each host, 
and the resulting strains were pooled and stored in 1 ml 
aliquots at −80 °C in 15% (v/v) glycerol for later use.

Bacterial Strains, Media, and Culture Conditions
We used 3 Enterobacteriaceae host species: E. coli DH10B 
(Durfee et al. 2008), K. pneumoniae Kp08 (Jordt et al. 2020), 
and S. enterica serovar typhimurium LT2 (McClelland et al. 
2001), abbreviated as Ec, Kp, and Se, respectively. All strains 
were cultured at 37 °C in lysogeny broth (LB).

Pooled Competitions Assays
Resistance levels conferred by the blaTEM genotypes were es-
timated using a modified minimum inhibitory concentration 
assay (Wiegand et al. 2008). The library stocks were thawed, 
grown in 50 ml of growth medium with 15 μg ml−1 tetracyc-
line, and diluted to an initial density close to 105 cells ml−1 es-
timated through dilution plating in triplicate (supplementary 
table S5, Supplementary Material online). To start the compe-
tition assays, 2.5 ml of diluted library was inoculated into 41 
test tubes supplemented with escalating cefotaxime (CTX) 
concentrations using 

√
2-fold dilutions from 2,049.37 up to 

0.00393 μg ml−1. After overnight incubation, samples from 
tubes with visible growth were taken for library amplification 
and sequencing, and final cell densities were determined 
using dilution plating in triplicate (supplementary table S6, 
Supplementary Material online).

Library Amplification and Sequencing
Plasmid DNA was extracted from cell pellets stored at 
−20 °C, and the barcode region was PCR-amplified using 
backbone-homologous primers (supplementary table S7, 
Supplementary Material online). Amplicons were purified 
and further amplified with unique indexing primers. 
Sequencing was performed on the Illumina NextSeq500 
platform.

Library Sequence Analysis, Genotype Growth, and 
Genotype Resistance
We processed the FASTQ files to extract 18 bp barcodes, 
cluster them using Bartender (Zhao et al. 2018), match 
them to the Sanger results during the cloning step 
(supplementary table S8, Supplementary Material online). 
For a given genotype (g) at a particular drug concentration 
(c), the corresponding growth rate (μc

g) was calculated using 
the estimated initial (nc

∗(0)) and final (nc
∗(T)) cell densities 

(supplementary tables S5 and S6, Supplementary Material
online) along with initial (bc

g(0)) and final (bc
g(T)) barcode 

frequencies using the following equation:

μc
g =

1
tc

ln
nc
∗(T)bc

g(T)

nc
∗(0)bc

g(0) 

where tc is the approximate period of growth under drug con-
centration c (see supplementary section S3, Supplementary 
Material online for details).

For the 3 barcodes of each genotype, we eliminated the 
one most deviant in growth rate across the drug concen-
tration gradient (determined by summing the squares 
of the pair-wise differences in growth rates). For the 2 
remaining barcodes, we fit a 3-parameter log-logistic 
dose–response curve (a few examples are shown in 
supplementary Fig. S1, Supplementary Material online) 
using the drc package in R (Ritz et al. 2015). We note 
that a fixed “no-growth” baseline improved curve fitting 
across genotypes. The 3-parameter estimates for the 
dose–response curve (upper asymptote, steepness, and in-
flection point) for each barcode-genotype-species combin-
ation are given in supplementary table S9, Supplementary 
Material online. We used the inflection point of the curve 
as a proxy for the resistance level. Host-specific landscapes 
were constructed by comparing the level of resistance of 
neighboring genotypes (Fig. 3). Specifically, we calculated 
the relative resistance level, RRL(i, j) = log√2 (RLi/RLj) by 
comparing the resistance level (RL in μg ml−1) of a focal 
genotype i to a different genotype j where genotypes i 
and j differ by a single mutation. Based on the RRL, muta-
tional steps were categorized as beneficial, deleterious, or 
neutral (solid, dashed, or dotted lines in Fig. 3a and c).

Validation of Resistance Levels Through Standard 
Minimum Inhibitory Concentration (MIC) Assays
We conducted conventional low-throughput minimum 
inhibitory concentration (MIC) assays to validate the re-
sistance levels estimated from our high-throughput ap-
proach. Bacterial strains were inoculated in triplicate into 
microtiter wells, each supplemented with increasing con-
centrations of CTX. After overnight incubation, the MIC 
values were determined as the average lowest concentra-
tion at which no visible bacterial growth was observed 
across the technical replicates. It is noteworthy that our 
high-throughput approach, which employs pooled library 
competition assays across a concentration gradient, af-
fords greater resolution in measuring bacterial resistance 
compared to traditional MIC assays. Our methodology 
provides a more granular measure of resistance by fitting 
a dose–response curve to a quantitative measure (i.e. 
growth rate), in contrast to MIC assays that produce a bin-
ary output (i.e. growth vs. no growth). The increased 
granularity is particularly advantageous for detecting subtle 
changes in resistance, such as those arising from mutations 
of small effects. Another advantage to our methodology is 
that all strains of interest are being exposed to the same 
drug environment (i.e. pooled in the same test tube). This 
contrasts with MIC assays where slight variation in the 
preparation of the drug gradient across strains and repli-
cates can add experimental error. In such a case, different 
genotypes (as well as different replicates of the same 
genotype) can be exposed to different concentrations, 
which can decrease the precision in the measured level 
of resistance. Importantly, despite these methodological 
differences, we observed a strong correlation between 
the resistance levels identified by our high-throughput 
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assays and those derived from standard MIC assays 
(supplementary Fig. S5, Supplementary Material online).

Evolutionary Simulations
Our simulations modeled gene evolution over defined per-
iods in different host species as an adaptive walk (Fragata 
et al. 2019) (see supplementary Methods, Supplementary 
Material online for more details). Within each period, mu-
tation and selection occurred at discrete time steps. 
Genotypes with higher resistance had a higher chance of 
becoming fixed, and the likelihood of this fixation was in-
fluenced by factors such as mutation rate, population size, 
and the fitness differences (supplementary section S4, 
Supplementary Material online). Our simulation ignores 
the potential for multiple genotypes to coexist, as each 
selective replacement involves the fixation of a more 
resistant genotype over a time step. However, we note 
that the immediate fixation of the most resistant variant 
(from a set of mutants stochastically generated from a 
single genotype) reasonably mimics the iterative step within 
standard drug-gradient directed-evolution schemes 
(Salverda et al. 2010; Packer and Liu 2015; Salverda et al. 
2017). Simulation parameters, such as the mutation rate 
and the number of discrete time steps, were varied to assess 
their impact (supplementary table S10, Supplementary 
Material online). We demonstrated that the trends shown 
for the blaTEM gene maintained across parameter sweeps 
in mutation rate (supplementary Fig. S2, Supplementary 
Material online), cumulative time (supplementary Fig. S3, 
Supplementary Material online), and number of simulation re-
plicates (supplementary Fig. S4, Supplementary Material on-
line). Significance tests on the distributions of endpoint 
resistance were performed using Wilcoxon tests with 
Bonferroni corrections to determine whether HGT had a posi-
tive, negative, or neutral effect on the evolutionary outcomes.

Artificial Landscape Analysis
To investigate the impact of HGT on gene evolution across 
different host landscapes, we created artificial fitness land-
scapes for pairs of host species. As in Fig. 3a, each landscape 
involved all combinations of 5 mutations. For each pair of 
artificial landscapes, we started with a common additive 
“baseline” landscape, in which the effect of a mutation at 
locus i, which we label εi, was selected randomly between 
0 and εmax (we used the arbitrary value of εmax = 0.2). We 
then divided the fitness of every genotype by 

􏽐
i εi, such 

that the fitness of the genotype with no mutations was al-
ways 0 and the fitness of the genotype with all mutations 
was always 1. This baseline landscape was copied to 
generate the 2 landscapes for each host, which underwent 
further manipulation. Misalignment between host land-
scapes was introduced by randomly perturbing fitness va-
lues for a subset of genotypes. The new fitness values were 
picked from a normal distribution centered around the 
original fitness values (and truncated at 0 and 1). For 
this, we excluded the genotype with no mutations and 
the genotype with all 5 mutations, leaving 60 intermediate 

genotypes for potential reassignment (30 genotypes in 
each of the 2 hosts). By plotting the effect of every muta-
tion in one host as a function of its effect in the other host, 
the total misalignment was assessed by summing the per-
pendicular distances of all the mutational points from the 
identity line in the scatterplot. Using this framework, we 
ran 500 adaptive walks without HGT and 500 with HGT 
on each host landscape. The endpoint distributions were 
statistically compared as previously described to assess 
whether HGT had a positive (outsourcing), negative (in-
sourcing), or neutral (crowdsourcing) effect on the evolu-
tionary outcomes. To assess the relationship between 
landscape misalignment and evolutionary outcomes, we 
generated a large number of artificial landscape pairs 
and randomly sampled 50 pairs with a misalignment score 
that fell into each of 25 bins of increasing scores. We then 
ran simulations on each of the 1,250 landscape pairs and 
assessed the significance of the trend between misalign-
ment and evolutionary outcome using a permutation test.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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