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Section 1 :  Overview of approaches to estimate conjugation rate. 20 
21 

Section 1a : Overview of theoretical frameworks 22 
23 

In this section, we highlight three key methods for estimating conjugation rate. 24 
While outlining the theoretical frameworks, we highlight the key distinctions and 25 
theoretical assumptions of each approach. Levin et. al. (1) introduced a simple 26 
mathematical model describing the change in density of donors, recipients and 27 
transconjugants over time (given by dynamic variables 𝐷𝑡, 𝑅𝑡, and 𝑇𝑡, respectively). In 28 
this model, each population type grows exponentially at the same growth rate 𝜓. In 29 
addition, the transconjugant density increases because of conjugation events both from 30 
donors to recipients and from existing transconjugants to recipients at the same 31 
conjugation rate 𝛾. The recipient density decreases due to these conjugation events. The 32 
densities of these dynamic populations are described by the following differential 33 
equations (where the 𝑡 subscript is dropped from the dynamic variables for notational 34 
convenience):  35 

𝑑𝐷

𝑑𝑡
= 𝜓𝐷, [1.1] 

𝑑𝑅

𝑑𝑡
= 𝜓𝑅 −  𝛾𝐷𝑅 − 𝛾𝑇𝑅, [1.2] 

𝑑𝑇

𝑑𝑡
= 𝜓𝑇 +  𝛾𝐷𝑅 + 𝛾𝑇𝑅. [1.3] 

Equations [1.1]-[1.3] contains four notable assumptions. First, conjugation is 36 
described by mass-action kinetics, where conjugation events are proportional to the 37 
product of donor and recipient cell densities, which is a reasonable assumption in well-38 
mixed liquid cultures (1). Second, the model assumes a negligible rate of plasmid loss, a 39 
process whereby a dividing plasmid-containing cell produces one plasmid-containing 40 
daughter cell and one plasmid-free daughter. These first two assumptions exist in all the 41 
conjugation rate estimates we discuss. Third, the growth rate is the same for all cell types 42 
(i.e., in the language of equations [1]-[3], 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 𝜓). Fourth, the plasmid 43 
conjugation rate is the same from donors to recipients as from transconjugants to 44 
recipients (i.e., in the language of equations [1]-[3], 𝛾𝐷 = 𝛾𝑇 = 𝛾). More specifically, 45 

equations [1.1]-[1.3] are a special case of equations [1]-[3] where growth and conjugation 46 
is assumed to be homogeneous across strains. 47 

Popular rate estimation methods solved the set of ordinary differential equations 48 
from the Levin et. al. model (or a variation) to find an estimate for the conjugation rate 𝛾. 49 
The various methods differ by the assumptions used to find the analytical solution. Levin 50 
et. al. was the first to derive an estimate for the conjugation rate (𝛾) by making three 51 
additional simplifying assumptions. First, the change in cell density of donors due to 52 
growth is assumed to be negligible (i.e., 𝑑𝐷/𝑑𝑡 ≈ 0). Likewise, the change in cell density 53 
of recipients due to growth and to conjugation (i.e., transformation into transconjugants) 54 
is assumed to be negligible (i.e., 𝑑𝑅/𝑑𝑡 ≈ 0). Finally, transconjugants are assumed to be 55 
rare in the population such that the increase in transconjugant cell density is primarily 56 
through plasmid conjugation from donors to recipients (i.e., in equation [1.3], 𝛾𝐷𝑅 ≫ 𝜓𝑇 +57 
𝛾𝑇𝑅). All of these assumptions are satisfied if the cell growth rate is zero (𝜓 = 0), the 58 

conjugation rate (𝛾) is small, the system starts without transconjugants (𝑇0 = 0), and the 59 
densities of donors and recipients remain much greater than the density of 60 
transconjugants for the period under consideration (𝐷 ≫ 𝑇 and 𝑅 ≫ 𝑇). Using these 61 
simplifying assumptions, Levin et. al. solved for an expression of the conjugation rate in 62 
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terms of the density of donors, recipients, and transconjugants (𝐷𝑡, 𝑅𝑡, and 𝑇𝑡, 63 
respectively) after a period of incubation �̃� (see the GitHub Appendix I for a few different 64 

approaches to the derivation).  65 

𝛾𝐷 =
𝑇𝑡

𝐷𝑡𝑅�̃� �̃�
. [1.4] 

We label the expression in equation [1.4] as the “TDR” estimate for the conjugation rate, 66 
where the letters in this acronym come from the dynamic variables used in the estimate. 67 
Besides the model assumptions of homogenous growth rates and conjugation rates, the 68 
most notable assumption used in the TDR derivation is that there is little to no change in 69 
the population densities due to growth. Thus, laboratory implementation that respects this 70 
assumption can be difficult (see section 1b for details). Regardless, TDR is a commonly 71 
used estimate (1–4).  72 

Simonsen et. al. derived the other most widely used estimate for conjugation rate 73 
𝛾, which importantly expands application beyond the TDR method by allowing for 74 
population growth (5). Indeed, they allowed for the rate of population growth to change 75 
with the level of a resource in the environment, adding a dynamic variable for the resource 76 
concentration. In addition, the conjugation rate can also change with the resource 77 
concentration. The authors focus on a case where both growth and conjugation rates vary 78 
with resource concentration according to the Monod function. This choice was informed 79 
by experimental results showing that cells enter stationary phase and conjugation ramps 80 
down to a negligible level as resources are depleted (1). This pattern occurs for various 81 
plasmid incompatibility groups, but not all (6). Simonsen et. al. used this updated model 82 
to derive an estimate for plasmid conjugation rate (see GitHub Appendix II for the 83 
derivation).  84 

𝛾𝐷 = 𝜓 ln(1 +
𝑇�̃�
𝑅𝑡

𝑁𝑡
𝐷𝑡
)

1

(𝑁𝑡 −𝑁0)
. [1.5]

We refer to equation [1.5] as the “SIM” estimate for conjugation rate throughout the 85 
manuscript, where SIM stands for “Simonsen et. al. Identicality Method” since the 86 
underlying model assumes that all strains are identical with regards to growth, and donors 87 
and transconjugants are identical with regards to conjugation rate. The SIM estimate 88 
involves measuring the density of the initial population (𝑁0), and the final density of donors 89 
(𝐷𝑡), recipients (𝑅𝑡), transconjugants (𝑇𝑡), and the total population (𝑁�̃�) after the incubation 90 

time �̃�. The SIM estimate is popular since it allows for the use of batch culture in the 91 
laboratory (see Section 1b for details). Thus, it circumvents the constraints of the 92 
laboratory implementation of TDR; however, the underlying model holds the same 93 
assumptions as before: homogeneous growth rates and conjugation rates.  94 

Huisman et. al. recently updated the SIM model, further extending its application 95 
by relaxing the assumption of identical growth and transfer rates for all strains (7). 96 
Specifically, the authors introduced population specific growth rates for donors, recipients, 97 
and transconjugants (𝜓𝐷, 𝜓𝑅, and 𝜓𝑇, respectively) and population specific conjugation 98 
rates for donors and transconjugants (𝛾𝐷 and 𝛾𝑇). Huisman et. al. made three additional 99 

simplifying assumptions. First, conjugation and growth rates are assumed to be constant 100 
until resources are depleted, eliminating the additional resource concentration equation 101 
added in the SIM approach. Second, the increase in recipients due to growth greatly 102 
outpaces the decrease in recipients due to conjugation (i.e., 𝜓𝑅𝑅 ≫ 𝛾𝐷𝐷𝑅 + 𝛾𝑇𝑇𝑅). Third, 103 
the increase in transconjugants due to growth or plasmid conjugation from donors to 104 
recipients greatly outpaces the increase in transconjugants due to plasmid conjugation 105 
from transconjugants to recipients (i.e., 𝜓𝑇𝑇 + 𝛾𝐷𝐷𝑅 ≫ 𝛾𝑇𝑇𝑅). These model conditions 106 
are reasonable if the system starts with donors and recipients present but transconjugants 107 
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are absent, the system is tracked for a short period of time �̃�, conjugation rates are low 108 
relative to growth rates, and the transconjugant conjugation rate (𝛾𝑇) is not much higher 109 

than the donor conjugation rate (𝛾𝐷). With these added assumptions, equations [1.1]-[1.3] 110 
can be reformulated as the following approximate system of equations:  111 

𝑑𝐷

𝑑𝑡
= 𝜓𝐷𝐷, [1.6] 

𝑑𝑅

𝑑𝑡
= 𝜓𝑅𝑅, [1.7] 

𝑑𝑇

𝑑𝑡
= 𝜓𝑇𝑇 + 𝛾𝐷𝐷𝑅, [1.8] 

Huisman et. al. used these equations to derive an estimate for the donor conjugation rate 112 

𝛾𝐷 = (𝜓𝐷 + 𝜓𝑅 −𝜓𝑇)
𝑇𝑡

(𝐷𝑡𝑅𝑡 − 𝐷0𝑅0𝑒𝜓𝑇𝑡)
, [1.9] 

where different cell types now can have different growth rates (see GitHub Appendix III 113 
for the derivation). We term equation [1.9] as the ASM estimate for donor conjugation 114 
rate, where ASM stands for “Approximate Simonsen et. al. Method”. 115 

For all methods (TDR, SIM, ASM, and LDM), we summarize model variables and 116 
parameters in Table A. In addition, all variables used in the conjugation estimates are in 117 
Table B. Lastly, all assumptions underlying each estimate are in Table C.  118 

Table A: Variables and parameters used in plasmid dynamic models. 

Variable/ 
Parameter 

Description 
Relevant 
Estimate(s) 

Units 

𝐷 Donor density 
TDR, SIM, 
ASM, LDM 

cfu

ml
𝑅 Recipient density 

TDR, SIM, 
ASM, LDM 

𝑇 Transconjugant density 
TDR, SIM, 
ASM, LDM 

𝜓 Growth rate (not population specific) TDR, SIM 

1

hr

𝜓𝐷 Donor growth rate ASM, LDM 

𝜓𝑅 Recipient growth rate ASM, LDM 

𝜓𝑇 Transconjugant growth rate ASM, LDM 

𝛾 Conjugation rate (not population specific) TDR, SIM 

ml

cfu ∙ hr
𝛾𝐷 Donor-recipient conjugation rate ASM, LDM 

𝛾𝑇 Transconjugant-recipient conjugation rate ASM, LDM 

Table B: Variables and parameters used to estimate* conjugation rate 

Variable/Parameter Description Relevant Estimate Units 

�̃� 
Incubation time (final 
sampling time) 

TDR, SIM**, ASM, 
LDM 

hr 
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𝐷0, 𝑅0 
Initial donor and recipient 
densities 

ASM, LDM 

cfu

ml

𝐷𝑡 , 𝑅𝑡 
Final donor and recipient 
densities 

TDR, SIM, ASM, LDM 

𝑇𝑡 Final transconjugant density TDR, SIM, ASM 

𝑁0, 𝑁𝑡 
Initial and final total 
population density 

SIM 

𝜓𝑇 Transconjugant growth rate ASM hr−1 

𝑝0(�̃�)
Probability a population has 
no transconjugants 

LDM 

* The laboratory estimates are used here (see Section 1b)
** If the SIM assay is conducted on exponentially growing cultures (see Section 1c) �̃�
along with 𝑁0 and 𝑁𝑡 can be used to estimate 𝜓 (otherwise, an independent estimate
of 𝜓 is needed).

Table C: Summary of modeling assumptions. 

Assumption TDR SIM ASM LDM 

Conjugation events follow mass-action kinetics X X X X 

The plasmid loss rate of the focal plasmid is zero X X X X 

The cell populations do not change in size due to growth X 

Processes of conjugation and growth are not resource 
dependent* 

X X X 

The cell populations grow exponentially (i.e., constant 
growth rate) 

X X 

The growth rate is identical for all cell types X X 

The transconjugant conjugation rate is not high relative to 
the donor conjugation rate  

X X X 

* The SIM model can incorporate resource-dependent growth and conjugation if (1) growth and transfer
rates are homogeneous and (2) the functional form for resource dependence is the same for growth and
transfer.

Section 1b : Alternative laboratory forms for conjugation estimates 119 
120 

Often the conjugation estimates can be re-written into a form of the equation that 121 
is more amenable to laboratory implementation. Here we walk through rearranging the 122 
equations for a subset of the estimates.  123 

For the SIM estimate, we start with equation [1.5]. If the entire period from 𝑡 = 0 to 124 

𝑡 = �̃� involves exponential growth, then 𝑁𝑡 = 𝑁0𝑒
𝜓𝑡 . In such a case, 𝜓 = (1/�̃�) ln(𝑁𝑡/𝑁0).125 

We arrive at the alternative laboratory form for SIM 126 

𝛾 =
1

�̃�
[ln (1 +

𝑇𝑡
𝑅𝑡

𝑁𝑡
𝐷𝑡
)]
ln𝑁𝑡 − ln𝑁0
𝑁𝑡 − 𝑁0

. [1.10] 

127 
128 

We note that equation [1.10] is appropriate for some “truncated” versions of the
SIM approach, but not generally applicable to the standard overnight version in 
which the culture does not grow exponentially across the entire assay. 129 
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To rearrange the ASM estimate, we start with equation [1.9]. While the equations 130 
𝜓𝐷 = (1/�̃�) ln(𝐷𝑡/𝐷0) and 𝜓𝑅 = (1/�̃�) ln(𝑅𝑡/𝑅0) again provide estimates on donor and131 
recipient growth rates, we cannot express the transconjugant growth rate (𝜓𝑇) as a simple 132 

expression of time and initial/final densities of members of the mating culture. However, 133 
data from a transconjugant monoculture supply an estimate for this parameter.  Thus, we 134 
arrive at the laboratory form for ASM 135 

𝛾𝐷 = {
1

�̃�
(ln𝐷𝑡𝑅𝑡 − ln𝐷0𝑅0) − 𝜓𝑇}

𝑇𝑡

(𝐷𝑡𝑅𝑡 −𝐷0𝑅0𝑒𝜓𝑇�̃�)
. [1.11]

To rearrange the LDM estimate, we start with equation [11]. Since 𝐷𝑡 = 𝐷0𝑒
𝜓𝐷𝑡136 

and 𝑅𝑡 = 𝑅0𝑒
𝜓𝑅𝑡, it is the case that 𝜓𝐷 = (1/�̃�) ln(𝐷𝑡/𝐷0) and 𝜓𝑅 = (1/�̃�) ln(𝑅𝑡/𝑅0). So,137 

we have 138 

𝛾𝐷 =
1

�̃�
ln 𝑝0(�̃�)

ln (
𝐷𝑡
𝐷0
) + ln (

𝑅𝑡
𝑅0
)

𝐷0𝑅0 − 𝐷𝑡𝑅𝑡
139 

After rearrangement, we have 140 

𝛾𝐷 =
1

�̃�
{− ln 𝑝0(�̃�)}

ln(𝐷𝑡𝑅𝑡) − ln(𝐷0𝑅0)

𝐷𝑡𝑅𝑡 − 𝐷0𝑅0
.141 

In the laboratory, we measure an estimate (�̂�0(�̃�)) of the probability that a population has142 
no transconjugants (𝑝0(�̃�)) which is simply the fraction of the populations (i.e., parallel143 

cultures) that have no transconjugants at the incubation time �̃�. In addition, if a 1 ml 144 
volume is not used for each mating culture (assuming that all cell densities are measured 145 
in cfu/ml units), then we must add a correction factor 𝑓 (see Section 5 for details and an 146 

example). Thus, we arrive at the laboratory form for the LDM, which is equation [13]. 147 

𝛾𝐷 =
𝑓

�̃�
[− ln �̂�0(�̃�)]

ln𝐷𝑡𝑅𝑡 − ln𝐷0𝑅0
𝐷𝑡𝑅𝑡 −𝐷0𝑅0

148 

149 
Section 1c : Overview of laboratory implementations 150 

151 
In this section, we compare the laboratory implementations of the various 152 

estimates: TDR, SIM, and ASM. Each method is explained either as recommended by its 153 
authors or the most simplified protocol to acquire the information for the estimate. For 154 
each, we describe proper laboratory implementation for the approaches based on the 155 
model and derivation assumptions used to acquire the estimate. Note in this section, we 156 
do not explore the assumptions that are violated due to the biological entities being tested 157 
(i.e., specific species or plasmids) which can result in violations such as unequal 158 
conjugation rates or growth rates. These are explored in the main text and Section 4 via 159 
stochastic simulations. Thus, we focus solely on the parameters under the experimenter’s 160 
control. For ease of reference, key implementation differences are highlighted in Table D. 161 

The TDR estimate has a simple form (equation [1.4]). Donors and recipients are 162 
mixed in non-selective growth medium and incubated for a specified time �̃�. Typically, 163 
densities after the incubation time are determined using selective plating. The derivation 164 
assumes the density in donors and recipients does not change due to growth which sets 165 
specific constraints on the implementation of this approach. In the original study, Levin 166 
et. al. used a chemostat to keep the population constant (1). Other studies shorten the 167 
incubation time �̃� such that population growth is negligible and use various laboratory 168 
tools to detect the small number of transconjugants (3, 4). 169 

The SIM estimate is not built on an assumption of unchanging population densities. 170 
Donor and recipient populations in exponential phase are mixed in non-selective growth 171 
medium. The initial population density (𝑁0) is determined by dilution plating on non-172 
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selective medium. After the mating mixture is incubated (for a period of �̃�), the final 173 
densities (𝐷𝑡, 𝑅𝑡, 𝑇𝑡, and 𝑁𝑡) are determined by dilution plating on selective and non-174 

selective media. To implement SIM as written in equation [1.10] (see Section 1b), the 175 
specified incubation time �̃� must occur well before stationary phase is reached to collect 176 
proper data for estimating the population growth rate (𝜓 = (ln𝑁𝑡 − ln𝑁0)/�̃�). There is an177 
alternative option for implementing the SIM using equation [1.5]. The donor and recipient 178 
populations are mixed and incubated under batch culture conditions (specifically 179 
exponential and stationary phase). However, the (maximum) population growth rate (𝜓) 180 
needs to be determined with two additional samplings from the mixed population at times 181 
𝑡𝑎 and 𝑡𝑏, both occurring within exponential phase:  182 

𝜓 =
ln (𝑁𝑡𝑏/𝑁𝑡𝑎)

𝑡𝑏 − 𝑡𝑎
[1.12] 

The population densities 𝑁𝑡𝑎 and 𝑁𝑡𝑏 can be estimated either through colony counts from 183 

plating or optical density from a spectrophotometer. Either way, the timing of exponential 184 
phase is important for this approach and at least some analysis during this phase is 185 
required regardless of the implementation strategy. 186 

For the ASM estimate, donor and recipient populations in exponential phase are 187 
mixed in non-selective medium. Initial densities (𝐷0 and 𝑅0) are determined by plating 188 
dilutions on the appropriate selective media. After the donor-recipient co-culture 189 
incubates for a specified time (�̃�), final densities (𝐷𝑡, 𝑅𝑡, and 𝑇𝑡) are determined by plating190 

dilutions on the appropriate selective media. From the transconjugant-selecting agar 191 
plates, a transconjugant clone is incubated in monoculture then sampled twice (at times 192 
𝑡𝑎 and 𝑡𝑏) in exponential phase to measure the transconjugant growth rate (𝜓𝑇 =193 

ln(𝑇𝑡𝑏/𝑇𝑡𝑎) /(𝑡𝑏 − 𝑡𝑎)). The authors point out a critical consideration for proper194 

implementation of the ASM is the incubation time �̃�. Not only is sampling in exponential 195 

phase important, but if the incubation time �̃� is too long and passes a critical time (𝑡𝑐𝑟𝑖𝑡) 196 
the approximations used to derive the ASM break down. To avoid overshooting 𝑡𝑐𝑟𝑖𝑡, the 197 
authors recommend sampling as soon as measurable transconjugants arise. To 198 
determine that the incubation time used was below the critical time (𝑡𝑐𝑟𝑖𝑡), a second assay 199 

is recommended by the authors to measure the transconjugant conjugation rate 𝛾𝑇, which 200 
will determine if the original incubation time �̃� was below 𝑡𝑐𝑟𝑖𝑡 for measuring the donor 201 
conjugation rate. This second assay would have the transconjugant clone become the 202 
donor in the mixture, while a newly marked recipient must be used so that donors and 203 
recipients can be distinguished using selective plating. 204 

Each method has aspects of implementation in common. Each one shares the 205 
basic approach of mixing donors and recipients over some incubation time �̃�. Each 206 
estimate requires reliable selectable markers to differentiate donors, recipients, and 207 
transconjugants. However, all estimates have some constraints on initial densities and 208 
time of measurement. This can occur because the experimenter needs to capture 209 
conjugation events (all estimates require this), avoid population growth (TDR), or keep 210 
growth exponential (ASM, and at least parts of SIM). Even so, each method has clear 211 
distinctions. The most notable is the incubation time �̃� (i.e., the end of the assay). The 212 
TDR method is constrained to conditions where no change in population size due to 213 
growth can occur. For SIM, initial and final sampling are not constrained to a particular 214 
phase of growth; however, measurement of the growth rate must occur during the 215 
exponential growth phase. For ASM, initial sampling is in early exponential phase, and 216 
the final sampling needs to occur during a specific time window. In other words, the assay 217 
needs to be long enough that measurable transconjugants appear, but short enough so 218 
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that assumptions are not violated (which can occur if transconjugant density becomes too 219 
large).  220 

Table D: Comparison of implementations. 

Summary TDR SIM ASM LDM 

Assay conditions minimizing the change in density due to 
growth  

X 

Minimize incubation time necessary for producing 
transconjugants 

X 

An incubation time results in a subset of parallel populations 
having no transconjugants 

X 

Assay occurs over a period of exponential cell growth X* X X 

Assay requires multiple parallel mating cultures to obtain 
one estimate 

X 

Assay requires a measurement of transconjugant density X X X 

Assay requires a measurement of population growth rate X* 

Assay requires a measurement of transconjugant growth 
rate 

X 

* For the SIM assay, either the entire assay is conducted over exponentially growing
cultures or an independent estimate for (maximum) population growth rate is needed.

Section 2 : Derivation of 𝒑𝟎(�̃�) for the LDM estimate 221 

222 
In this section, we will continue to assume an experimental volume of 1 ml for the co-223 
culture such that the density of cells per ml is equivalent to the cell count numerically. We 224 
will not explicitly track units in this section, but we deal with the case of an arbitrary 225 
experimental volume in Section 5. 226 

227 
We define 𝑝𝑛(𝑡) to be the probability that there are 𝑛 transconjugants at time 𝑡, where 𝑛228 
is a non-negative integer (i.e., 𝑝𝑛(𝑡) = Pr{𝑇𝑡 = 𝑛}). We focus here on the probability that229 
transconjugants are absent (namely, where 𝑛 = 0) and derive an expression for 𝑝0(𝑡). By230 

definition 𝑝0(𝑡 + Δ𝑡) = Pr{𝑇𝑡+Δ𝑡 = 0}. However, 𝑇𝑡+Δ𝑡 = 0 implies 𝑇𝑡 = 0, so we can write231 
𝑝0(𝑡 + Δ𝑡) = Pr{(𝑇𝑡+Δ𝑡 = 0) ∩ (𝑇𝑡 = 0)} = Pr{𝑇𝑡+Δ𝑡 = 0 | 𝑇𝑡 = 0}Pr{𝑇𝑡 = 0},232 

Given that 𝑝0(𝑡) = Pr{𝑇𝑡 = 0}, we can use equation [9] to write the following time-233 
increment recursion for 𝑝0(𝑡): 234 

𝑝0(𝑡 + Δ𝑡) = (1 − 𝛾𝐷𝐷𝑡𝑅𝑡Δ𝑡)𝑝0(𝑡).235 
This can be simplified as follows 236 

𝑝0(𝑡 + Δ𝑡) − 𝑝0(𝑡)

Δ𝑡
= −𝛾𝐷𝐷𝑡𝑅𝑡𝑝0(𝑡).237 

Taking the limit as Δ𝑡 → 0 gives 238 

lim
Δ𝑡→0

𝑝0(𝑡 + Δ𝑡) − 𝑝0(𝑡)

Δ𝑡
=
𝑑𝑝0(𝑡)

𝑑𝑡
. 239 

Therefore, we have the following differential equation: 240 
𝑑𝑝0(𝑡)

𝑑𝑡
= −𝛾𝐷𝐷𝑡𝑅𝑡𝑝0(𝑡).241 
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We are assuming 𝐷𝑡 = 𝐷0𝑒
𝜓𝐷𝑡 and 𝑅𝑡 = 𝑅0𝑒

𝜓𝑅𝑡. We note that these assumptions are242 
reasonable if the densities of donors and recipients are reasonably large and the rate of 243 
transconjugant generation per recipient cell (𝛾𝐷𝐷𝑡 + 𝛾𝑇𝑇𝑡 , or if 𝑇𝑡 = 0, simply 𝛾𝐷𝐷𝑡) 244 

remains very small relative to per capita recipient growth rate (𝜓𝑅). Under these 245 
assumptions, our differential equation becomes: 246 

𝑑𝑝0(𝑡)

𝑑𝑡
= −𝛾𝐷𝐷0𝑅0𝑒

(𝜓𝐷+𝜓𝑅)𝑡𝑝0(𝑡).247 

We solve this differential equation via separation of variables, integrating from 0 to our 248 
incubation time of interest �̃�: 249 

∫
𝑑𝑝0(𝑡)

𝑝0(𝑡)

𝑡

0

= ∫−𝛾𝐷𝐷0𝑅0𝑒
(𝜓𝐷+𝜓𝑅)𝑡𝑑𝑡

𝑡

0

, 250 

ln 𝑝0(𝑡)|0
𝑡 =

−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

𝑒(𝜓𝐷+𝜓𝑅)𝑡|
0

𝑡

 , 251 

ln 𝑝0(�̃�) − ln 𝑝0(0) =
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

𝑒(𝜓𝐷+𝜓𝑅)𝑡 −
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

 . 252 

Given that 𝑝0(0) = 1,253 

ln 𝑝0(�̃�) =
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1),254 

𝑝0(�̃�) = exp {
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)},255 

which is equation [10]. 256 
257 

Section 3 : Derivation of mutation rate from the Luria-Delbrück experiment 258 
259 

Here we derive the classic estimate of mutation rate from Luria and Delbrück. We assume 260 
that there is a population of wild-type cells that grow according to the following equation: 261 

𝑁𝑡 = 𝑁0𝑒
𝜓𝑁𝑡 , [3.1] 

where 𝑁𝑡 is the number of wild type cells at time 𝑡 and 𝜓𝑁 is the per capita growth rate. 262 
The wild-type population dynamics are assumed to be deterministic (a reasonable 263 
assumption if the initial population size is reasonably large, i.e., 𝑁0 ≫ 0). We are also 264 
ignoring the loss of wild-type cells to mutational transformation, but this omission is 265 
reasonable if the mutation rate is very small relative to per capita wild-type growth rate. 266 

Let the number of mutants be given by a random variable 𝑀𝑡. This variable takes 267 
on non-negative integer values. For a very small interval of time, Δ𝑡, the current number 268 
of mutants will either increase by one or remain constant. The probabilities of each 269 
possibility are given as follows:   270 

Pr{𝑀𝑡+Δ𝑡 = 𝑀𝑡 + 1} = 𝜇𝑁𝑡Δ𝑡 + 𝜓𝑀𝑀𝑡Δ𝑡, [3.2] 

Pr{𝑀𝑡+Δ𝑡 = 𝑀𝑡} = 1 − (𝜇𝑁𝑡 + 𝜓𝑀𝑀𝑡)Δ𝑡. [3.3] 

The two terms on the right-hand side of equation [3.2] give the ways that a mutant can be 271 
generated. The first term measures the probability that a wild-type cell undergoes a 272 
mutation (𝜇 is the mutation rate). The second term gives the probability that a mutant cell 273 
divides and produces two mutant cells (𝜓𝑀 is the mutant growth rate). Equation [3.3] is 274 

the probability that neither of these processes occur. 275 
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Analogous to the procedure in Section 2 (with 𝑝0(𝑡) = Pr {𝑀𝑡 = 0}):276 
𝑝0(𝑡 + Δ𝑡) = (1 − 𝜇𝑁𝑡Δ𝑡)𝑝0(𝑡).277 

By rearranging, taking the limit as Δ𝑡 → 0, and utilizing equation [3.1], we have 278 
𝑑𝑝0(𝑡)

𝑑𝑡
= −𝜇𝑁0𝑒

𝜓𝑁𝑡𝑝0(𝑡).279 

This differential equation can be solved in an analogous way as well 280 

∫
𝑑𝑝0(𝑡)

𝑝0(𝑡)

𝑡

0

= ∫−𝜇𝑁0𝑒
𝜓𝑁𝑡𝑑𝑡

𝑡

0

, 281 

ln 𝑝0(𝑡)|0
𝑡 =

−𝜇𝑁0
𝜓𝑁

𝑒𝜓𝑁𝑡|
0

𝑡

, 282 

ln 𝑝0(�̃�) − ln 𝑝0(0) =
−𝜇𝑁0
𝜓𝑁

𝑒𝜓𝑁𝑡 −
−𝜇𝑁0
𝜓𝑁

 . 283 

Because we assume 𝑀0 = 0, we must have 𝑝0(0) = 1, and284 

ln 𝑝0(�̃�) =
−𝜇𝑁0
𝜓𝑁

(𝑒𝜓𝑁𝑡 − 1).285 

Solving for the mutation rate 𝜇 286 

𝜇 = − ln 𝑝0(�̃�)
𝜓𝑁

𝑁0(𝑒𝜓𝑁𝑡 − 1)
, 287 

which is equation [12].  This equation can also be expressed as: 288 

𝜇 = − ln 𝑝0(�̃�)
𝜓𝑁

𝑁𝑡 −𝑁0
. 289 

To recover Luria and Delbrück’s original formulation, consider a new time variable 290 
𝑧 defined as follows:  291 

𝑧 =
𝑡

𝑡𝑑 ln 2⁄
, 292 

where 𝑡𝑑 is the period required for population doubling during exponential growth. 293 
Because  294 

𝑁0𝑒
𝜓𝑁𝑡 = 𝑁02

𝑡/𝑡𝑑 ,295 
it is the case that 296 

𝜓𝑁 =
1

𝑡𝑑 ln 2⁄
. 297 

Therefore, 𝑧 = 𝜓𝑁𝑡 and the equation 𝑁𝑡 = 𝑁0𝑒
𝜓𝑁𝑡 can be expressed as298 

𝑁𝑧 = 𝑁0𝑒
𝑧299 

Performing the same analysis on this new equation gives the original formulation (their 300 
equations [4] and [5], where our 𝜇 is given by their “a” and our �̃� is given by their “t”): 301 

𝜇 =
− ln 𝑝0(�̃�)

𝑁𝑧 −𝑁0
. 302 

303 

Section 4 : Extended Simulation Results 304 
305 

Section 4a : Extended stochastic simulation methods 306 
307 

To systematically explore the effects of heterogeneous growth and conjugation 308 
rates (as well as non-zero rates of plasmid loss) on the accuracy and precision of 309 
estimating the donor conjugation rate (𝛾𝐷), we developed a stochastic simulation 310 
framework using the Gillespie algorithm. We ran sets of simulations sweeping through 311 
parameter values. Each simulation examined a biological process (i.e., growth, 312 
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conjugation) in isolation by manipulating one or two of the relevant parameters. For 313 
Section 4b-d, we used a “baseline” set of parameters (𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 1, and 314 

𝛾𝐷 =  𝛾𝑇 = 1 ×  10−6) and initial densities (𝐷0 = 𝑅0 = 1 × 10
2 and 𝑇0 = 0) unless315 

otherwise indicated. For each initial parameter setting, we simulated 10,000 parallel 316 
populations and calculated the conjugation rate using various methods (TDR, SIM, ASM, 317 
and LDM). The incubation time selection criteria used for the SIM estimate was also used 318 
for the TDR and ASM estimates (see Materials and Methods and Table E). However, 319 
given that all our simulated populations increase in size over the incubation time, a 320 
fundamental assumption of the TDR approach is broken for all the runs (i.e., no change 321 
in the density due to growth). The TDR estimate was included to be comprehensive (and 322 
illustrate that violation of the no growth assumption leads to systemic bias). Also, we note 323 
that we calculated the ASM metric in all scenarios and that in some cases the incubation 324 
time �̃� passed the critical time threshold (𝑡𝑐𝑟𝑖𝑡) where the ASM assumptions break down 325 
(see Section 1a). The ASM estimate was included in all scenarios to be comprehensive 326 
and illustrate that implementing the assay after 𝑡𝑐𝑟𝑖𝑡 can lead to bias. Given that the 327 

chosen incubation time �̃� to evaluate these simulations is early, it highlights that for some 328 
parametric combinations proper implementation of the ASM metric is not possible. Given 329 
that the Gillespie algorithm is computationally expensive and the large number of 330 
simulations needed to sweep through parameters, we chose low initial densities and high 331 
conjugation rates for the baseline condition. In Section 4e, we demonstrate that the trends 332 
shown for the baseline condition are also observed with more realistic parameter values 333 
and higher initial densities.  334 

Table E: Specific incubation times (�̃�) used in stochastic simulations to compare 

across parameter settings. Each row lists the relevant figure and the corresponding x-
axis value. Time is given in hours. For each parameter setting, the incubation time �̃� for 
the LDM estimate is set to the average 𝑡∗, and for the SIM estimate is given by the time 
point for which an average of 50 transconjugants is reached. 

Figure x-axis value �̃�𝐋𝐃𝐌  �̃�𝐒𝐈𝐌

Fig 4, Fig Aa 0.0625 4.34 7.89 

Fig 4, Fig Aa 0.125 4.11 7.49 

Fig 4, Fig Aa 0.25 3.7 6.78 

Fig 4, Fig Aa 0.5 3.1 5.67 

Fig 4, Fig Aa 1 2.35 4.27 

Fig 4, Fig Aa 2 1.61 2.86 

Fig 4, Fig Aa 4 1.01 1.74 

Fig 4, Fig Aa 8 0.6 1 

Fig 4, Fig C 1 x 109 2.35 4.27 

Fig 4, Fig C 1 x 108 2.35 4.27 

Fig 4, Fig C 1 x 107 2.35 4.27 

Fig 4, Fig C 1 x 106 2.35 4.27 

Fig 4, Fig C 1 x 105 2.35 4.25 

Fig 4, Fig C 1 x 104 2.33 4.11 

Fig 4, Fig C 1 x 103 2.16 3.4 

Fig 4, Fig C 1 x 102 1.44 2.02 

Fig Ab 0.0625 4.35 8.18 
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Fig Ab 0.125 4.11 7.66 

Fig Ab 0.25 3.71 6.85 

Fig Ab 0.5 3.1 5.69 

Fig Ab 1 2.35 4.27 

Fig Ab 2 1.61 2.86 

Fig Ab 4 1.01 1.74 

Fig Ab 8 0.6 0.99 

Fig Ba 0.0625 3.3 6.4 

Fig Ba 0.125 3.22 6.23 

Fig Ba 0.25 3.07 5.89 

Fig Ba 0.5 2.8 5.26 

Fig Ba 1 2.35 4.27 

Fig Ba 2 1.78 3.07 

Fig Ba 4 1.2 1.99 

Fig Ba 8 0.74 1.15 

Fig Bb 0.0625 3.31 6.45 

Fig Bb 0.125 3.23 6.27 

Fig Bb 0.25 3.07 5.92 

Fig Bb 0.5 2.8 5.27 

Fig Bb 1 2.35 4.27 

Fig Bb 2 1.78 3.07 

Fig Bb 4 1.2 1.97 

Fig Bb 8 0.74 1.15 

Fig Bc 0.0625 2.64 4.59 

Fig Bc 0.125 2.62 4.57 

Fig Bc 0.25 2.59 4.54 

Fig Bc 0.5 2.52 4.46 

Fig Bc 1 2.35 4.27 

Fig Bc 2 1.97 3.62 

Fig Bc 4 1.34 2.31 

Fig Bc 8 0.8 1.29 

Fig D 0.00001 2.35 4.27 

Fig D 0.0001 2.35 4.27 

Fig D 0.001 2.35 4.27 

Fig D 0.01 2.36 4.29 

Fig D 0.1 2.47 4.49 

Section 4b : The effect of unequal growth rates 335 
336 

We expanded the analysis used in Fig 4a by calculating a conjugation rate 337 
estimate with two additional estimates, TDR and ASM (Fig Aa). We simulated an 338 
additional biological scenario (Fig Ab) in which growth rates differ due to the host; i.e., 339 
where recipients and transconjugants grow faster (𝜓𝐷 <  𝜓𝑇 =  𝜓𝑅) or slower (𝜓𝐷 >  𝜓𝑇 =340 
 𝜓𝑅) than the donors. This captures the situation in which the recipient (and therefore 341 
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transconjugant) is a different strain or species from the donor and differs in growth rate. 342 
Like the conclusions drawn from Fig 4 with the effects of plasmid carriage, the LDM 343 
exhibited high accuracy and precision relative to other metrics.  344 

345 

Fig A: The effect of heterogenous growth rates on estimating conjugation rate. The 346 
Gillespie algorithm was used to simulate population dynamics. 100 estimates of the donor 347 
conjugation rate are shown for each parameter combination (summarized using boxplots 348 
with the same graphical convention as in Fig 3). The gray dashed line indicates the true 349 
value for the donor conjugation rate (here, 10−6). The boxes in gray indicate the baseline 350 
parameter setting, and all colored boxes represent deviation of one or two parameters 351 
from baseline. The baseline parameter values were 𝜓𝐷 = 𝜓𝑅 =  𝜓𝑇 = 1, and 𝛾𝐷 = 𝛾𝑇 =352 

10−6. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  10
2 and 𝑇0 = 0. All353 

incubation times are short but are specific to each parameter setting (see Materials and 354 
Methods and Table E for details). The LDM, SIM, TDR, and ASM estimates are in 355 
separate plots with estimate specific colors (brown, orange, cyan, and green, 356 
respectively). Zero estimates were set to 10-9 (the lowest y-value) for plotting on a log 357 
axis. (a) Unequal growth rates were explored over a range of growth rates for the plasmid-358 
bearing strains, namely 𝜓𝐷 = 𝜓𝑇 ∈  {0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8}. (b) Unequal 359 
growth rates were explored over a range of growth rates for the recipients and 360 
transconjugants, namely 𝜓𝑅 =  𝜓𝑇 ∈  {0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8}. The data and 361 
code needed to generate this figure can be found at https://github.com/livkosterlitz/LDM 362 
or https://doi.org/10.5281/zenodo.6677158. 363 
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In addition, we explored the effect of a single population (donor, recipient, and 365 
transconjugant) growing faster or slower in isolation (Fig B). Notably, a faster 366 
transconjugant growth rate led to very large variance with the other metrics (TDR, SIM, 367 
and ASM). Therefore, some parameter settings shown in Fig Bc have a large proportion 368 
of the simulations yielding a zero estimate at the specific incubation time. Given the log-369 
axis, the zero estimates were placed at the lowest y-value for plotting purposes.  370 

Fig B: The effect of population-specific heterogenous growth rates on estimating 371 
conjugation rate. Boxplots are using the same graphical representation as Fig A. (a, b, 372 
c) Unequal growth rates were explored over a range of growth rates for the donors,373 
recipients, and transconjugants, respectively, namely 𝜓𝑋  ∈  {0.0625, 0.125, 0.25, 0.5, 1,374 
2, 4, 8}. Zero estimates were set to 10-9 for plotting on a log axis. The data and code375 
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needed to generate this figure can be found at https://github.com/livkosterlitz/LDM or 376 
https://doi.org/10.5281/zenodo.6677158.  377 

378 
Section 4c : The effect of unequal conjugation rates 379 

380 
We expanded the analysis used in Fig 4b by calculating a conjugation rate 381 

estimate with two additional estimates, TDR and ASM (Fig C). Like the conclusions drawn 382 
from Fig 4b with the effects of heterogenous conjugation rate, the LDM exhibited high 383 
accuracy and precision relative to other metrics. 384 

385 

Fig C: The effect of heterogenous conjugation rates on estimating conjugation rate. 386 
Boxplots are using the same graphical representation as Fig A. Unequal conjugation rates 387 
were probed over a range of transconjugant conjugation rates, namely 𝛾𝑇 ∈ {10-9, 10-8,388 

10-7, 10-6, 10-5, 10-4, 10-3, 10-2}. Zero estimates were set to 10-8 for plotting on a log axis.389 
The data and code needed to generate this figure can be found at390 
https://github.com/livkosterlitz/LDM or https://doi.org/10.5281/zenodo.6677158.391 

Section 4d : The effect of a non-zero plasmid loss rate 392 

We extended the base model (equations [1] - [3]) to include plasmid loss due to 393 
improper plasmid segregation. Thus, transconjugants are transformed into plasmid-free 394 
recipients due to improper segregation of the plasmid at rate 𝜏𝑇. The donors are 395 
transformed into plasmid-free cells due to improper segregation of the plasmid at rate 𝜏𝐷. 396 

Therefore, the extended model (equations [4.1] - [4.4]) tracks the change in density of a 397 
new population type, plasmid-free former donors (𝐹). In total, the extended model 398 
describes the change in density of four populations (𝐷, 𝑅, 𝑇, and 𝐹) due to various 399 
biological parameters: growth rates (𝜓𝐷, 𝜓𝑅, 𝜓𝑇, and 𝜓𝐹), conjugation rates (𝛾𝐷𝑅, 𝛾𝑇𝑅, 400 

𝛾𝐷𝐹, and 𝛾𝑇𝐹), and plasmid loss rates (𝜏𝐷 and 𝜏𝑇). Importantly, we note that all conjugation 401 
rates are dyad-specific (i.e., donor-recipient-specific); therefore, our simulation framework 402 
is built to allow all rates to be unique. Since the new population type is a possible plasmid 403 
recipient, the subscript on the conjugation rate parameter now indicates the plasmid-404 
bearing cell type and the plasmid-free cell type (e.g., 𝛾𝑇𝐹 indicates the conjugation rate 405 
between a transconjugant and a plasmid-free former donor).  406 

𝑑𝐷

𝑑𝑡
= 𝜓𝐷𝐷 + (𝛾𝐷𝐹𝐷 + 𝛾𝑇𝐹𝑇)𝐹 − 𝜏𝐷𝐷, [4.1] 
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𝑑𝑅

𝑑𝑡
= 𝜓𝑅𝑅 − (𝛾𝐷𝑅𝐷 + 𝛾𝑇𝑅𝑇)𝑅 + 𝜏𝑇𝑇, [4.2]

𝑑𝑇

𝑑𝑡
= 𝜓𝑇𝑇 + (𝛾𝐷𝑅𝐷 + 𝛾𝑇𝑅𝑇)𝑅 − 𝜏𝑇𝑇. [4.3]

𝑑𝐹

𝑑𝑡
= 𝜓𝐹𝐹 − (𝛾𝐷𝐹𝐷 + 𝛾𝑇𝐹𝑇)𝐹 + 𝜏𝐷𝐷. [4.4]

Plasmid loss due to improper segregation is a common occurrence in plasmid 407 
populations and violates a model assumption underlying all the conjugation rate 408 
estimates. We simulated a range of plasmid loss rates, ranging from low (𝜏𝐷 = 𝜏𝑇 = 409 

0.0001) to high (𝜏𝐷 = 𝜏𝑇 = 0.1). The LDM had high accuracy and precision across all 410 
parameter settings (Fig D). The effect of plasmid loss was undetectable even for an 411 
extremely high loss rate (𝜏𝐷 = 𝜏𝑇 = 0.1). Similarly, the effect of plasmid loss was 412 
undetectable on the other conjugation estimates compared to their performance with a 413 
zero loss rate. Thus, we find that all estimates appear robust with regards to an 414 
introduction of plasmid loss.  415 

Fig D : The effect of non-zero plasmid loss rates on estimating conjugation rate. 416 
Boxplots are using the same graphical representation as Fig A. We explored improper 417 
plasmid segregation by considering a range of plasmid loss rates 𝜏𝐷 = 𝜏𝑇 ∈ {0.00001, 418 
0.0001, 0.001, 0.01, 0.1}. The data and code needed to generate this figure can be found 419 
at https://github.com/livkosterlitz/LDM or https://doi.org/10.5281/zenodo.6677158. 420 

421 
Section 4e : The effect of incubation time using realistic parameter settings 422 

423 
We expanded the analysis used in Fig 3 by calculating conjugation rate with two 424 

additional estimates, TDR and ASM. In addition, we explored the effects of incubation 425 
time in conjunction with other heterogenous parameter settings and a non-zero plasmid 426 
loss rate using realistic parameter settings. Given the computational expense of using 427 
realistic parameter values and higher initial densities, we explored five parameter 428 
combinations and the results are summarized in Fig E. We set more reasonable initial 429 

densities of the donors and recipients (𝐷0 = 𝑅0 = 1 × 10
5) and a conjugation rate that is430 

often reported in the literature (𝛾𝐷𝑅 = 𝛾𝐷𝐹 = 𝛾𝑇𝑅 =  𝛾𝑇𝐹 = 1 ×  10−14) unless otherwise431 
indicated. The conjugation rate was estimated for each method at 30-minute intervals. 432 
For each time interval, we applied estimate-specific filters. For the LDM estimate, a 30-433 
minute interval was shown if at least one parallel population had zero transconjugants. 434 
For the other estimates (SIM, TDR, and ASM), the 30-minute interval were shown if at 435 
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least 90 percent of the simulated populations contained transconjugants at the incubation 436 
time. 437 

The LDM estimate had high accuracy over all incubation times for all scenarios 438 
with precision increasing through time for the range explored. The other estimates also 439 
become more precise over time. However, their greater precision over time was 440 
sometimes accompanied by decreased accuracy. We note these inaccuracies recaptured 441 
the qualitative patterns revealed in the parameter sweeps. Again, the LDM estimate 442 
performed as well or better than other estimates across incubation times.  443 

Fig E : The effect of incubation time (�̃�) on estimating conjugation rate. The Gillespie 444 
algorithm with equations [4.1]-[4.4] was used to simulate population dynamics. Donor 445 
conjugation rate for each parameter combination was estimated at 30-minute intervals 446 
(summarized using boxplots with the same graphical convention as in Fig 3). The gray 447 
dashed line indicates the true value for the donor conjugation rate (here, 10−14). The 448 
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baseline parameter values were 𝜓𝐷 = 𝜓𝑅 =  𝜓𝑇 = 𝜓𝐹 =  1, 𝛾𝐷𝑅 = 𝛾𝐷𝐹 = 𝛾𝑇𝑅 =  𝛾𝑇𝐹 =449 

1 × 10−14, and 𝜏𝐷 = 𝜏𝑇 = 0. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  10
5450 

and 𝑇0 = 𝐹0 = 0. The LDM, SIM, TDR, and ASM estimates are in separate plots with 451 
estimate-specific colors (brown, orange, cyan, and green, respectively). (a) Baseline 452 
parameters were simulated as the non-heterogenous parameter comparison. (b) An 453 
unequal growth rate was simulated with 𝜓𝐷 =  𝜓𝑇 = 0.5. (c) An unequal growth rate was 454 
simulated with 𝜓𝑅 = 𝜓𝑇 = 2. (d) An unequal conjugation rate was simulated with 𝛾𝑇𝑅 =455 

10−8. (e) A non-zero plasmid loss rate was simulated with 𝜏𝐷 = 𝜏𝑇 = 0.0001. The data456 
and code needed to generate this figure can be found at 457 
https://github.com/livkosterlitz/LDM or  https://doi.org/10.5281/zenodo.6677158. 458 

459 
Section 4f : Modified Levin et. al. model with Monod growth and conjugation 460 

461 
To investigate the incongruency observed between the SIM and LDM estimates 462 

for the cross-species mating assay in Fig 6, we extend equations [4.1]-[4.4] to incorporate 463 
batch culture dynamics by tracking the change in resource concentration: 464 

𝑑𝐷

𝑑𝑡
= 𝜓𝐷(𝐶)𝐷 + 𝛾𝐷𝐹(𝐶)𝐷𝐹 + 𝛾𝑇𝐹(𝐶)𝑇𝐹 − 𝜏𝐷(𝐶)𝐷, [4.5]

𝑑𝑅

𝑑𝑡
= 𝜓𝑅(𝐶)𝑅 − 𝛾𝐷𝑅(𝐶)𝐷𝑅 − 𝛾𝑇𝑅(𝐶)𝑇𝑅 + 𝜏𝑇(𝐶)𝑇, [4.6]

𝑑𝑇

𝑑𝑡
= 𝜓𝑇(𝐶)𝑇 + 𝛾𝐷𝑅(𝐶)𝐷𝑅 + 𝛾𝑇𝑅(𝐶)𝑇𝑅 − 𝜏𝑇(𝐶)𝑇, [4.7]

𝑑𝐹

𝑑𝑡
= 𝜓𝐹(𝐶)𝐹 − 𝛾𝐷𝐹(𝐶)𝐷𝐹 − 𝛾𝑇𝐹(𝐶)𝑇𝐹 + 𝜏𝐷(𝐶)𝐷, [4.8]

𝑑𝐶

𝑑𝑡
= −(𝜓𝐷(𝐶)𝐷 + 𝜓𝑅(𝐶)𝑅 + 𝜓𝑇(𝐶)𝑇 + 𝜓𝐹(𝐶)𝐹)𝑒. [4.9]

where 𝑒 is the amount of resource required to produce a new cell. With the addition of a 465 

resource equation, there is an added assumption that growth, conjugation, and plasmid 466 
loss are Monod functions of resource concentration 𝐶: 467 

𝜓𝑋(𝐶)  =  𝜓𝑋𝑚𝑎𝑥  (
𝐶

𝑄 + 𝐶
), [4.10] 

𝛾𝑋𝑌(𝐶)  =  𝛾𝑋𝑌𝑚𝑎𝑥  (
𝐶

𝑄 + 𝐶
), [4.11] 

𝜏𝑋(𝐶)  =  𝜏𝑋𝑚𝑎𝑥  (
𝐶

𝑄 + 𝐶
), [4.12] 

where 𝑄 is the half saturation constant, and 𝜓𝑋𝑚𝑎𝑥,  𝛾𝑋𝑌𝑚𝑎𝑥, and 𝜏𝑋𝑚𝑎𝑥  are the maximum468 

growth, conjugation, and plasmid loss rates for relevant cell types 𝑋 and 𝑌, respectively. 469 
In other words, growth, conjugation, and plasmid loss decline and eventually turn off as 470 
resource concentration goes to zero.  471 

472 
Section 4g : Deterministic simulations with the Monod model using cross- 473 

species case study parameters 474 
475 

Here, we used equations [4.5]-[4.12] that incorporate batch culture dynamics to 476 
simulate the cross-species case study with the experimental parameters to investigate 477 

https://github.com/livkosterlitz/LDM
https://doi.org/10.5281/zenodo.6677158
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the incongruency observed between the SIM and LDM estimates for the cross-species 478 
mating assay in Fig 6. Most of the parameters were from the average of six experiments 479 
(𝐷0 = 1.17 x 105, 𝑅0 = 3.33 x 104, 𝜓𝐷 = 1.91, 𝜓𝑅 = 1.47, 𝜓𝑇 = 1.48, 𝛾𝐷𝑅 = 1.96 x 10-13, and480 

𝛾𝑇𝑅 = 1.96 x 10-7) with the remaining parameters informed by the 24 hour densities as to481 
mimic the batch culture conditions of the experiment (𝐶0 = 4.41 x 109, 𝑄 = 1 x 107, and 𝑒482 
= 1). We used the numerical solution to calculate the SIM estimate over time.  483 

We compared the numerical solution to the actual experimental measurements 484 
from the cross-species experiments. The simulated density and conjugation estimate (Fig 485 
Fa solid lines) were similar to the average experimental densities and the experimental 486 
SIM estimate (Fig Fa circle data points). Thus, the experimental LDM estimates for the 487 
cross-species (𝛾𝐷𝑅 = 1.96 x 10-13) and within-species (𝛾𝑇𝑅 = 1.96 x 10-7) conjugation rates488 
along with the measured growth rates are sufficient to recapture a relatively inflated 489 
experimental SIM estimate. In contrast, a simulation with homogenous conjugation rates 490 
using either the cross- or within-species conjugation rate does not closely align with the 491 
experimental data (Fig Fb and c, respectively). These simulations also demonstrate that 492 
the heterogeneity in the measured growth rates is insufficient to produce the mismatch 493 
observed in the experimental data (Fig Fb and c). This was worth checking given that 494 
heterogeneity in growth rates violates a modeling assumption of the SIM approach. This 495 
adds further support that the parametric heterogeneity (i.e., 𝛾𝐷 ≠  𝛾𝑇) in the conjugation 496 
rates is the potential cause for the incongruency between the LDM and SIM estimates 497 
reported in Fig 6.  498 

Fig F : Numerical simulation of extended model with Monod functions using 499 
experimental parameters. Deterministic numerical solutions of equations [4.5]-[4.12] 500 
showing donor, recipient, and transconjugant densities (red, blue, and purple solid 501 
trajectories, respectively) increasing over time using experimental parameter estimates 502 
(𝐷0 = 1.17 x 105, 𝑅0 = 3.33 x 104, 𝜓𝐷 = 1.91, 𝜓𝑅 = 1.47, 𝜓𝑇 = 1.48, 𝛾𝐷𝑅 = 1.96 x 10-13, and503 

𝛾𝑇𝑅 = 1.96 x 10-7) and batch culture parameters (𝐶0 = 4.41 x 109, 𝑄 = 1 x 107, and 𝑒 = 1)504 
unless otherwise indicated. The averaged experimental data is overlayed onto each part 505 
(circle data points) at both incubation times (grey dotted line at t = 5 and t = 24). (a) The 506 
numerical solution with the experimental parameter estimates were close to the 507 
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experimental measurements. (b) A scenario with homogenous low conjugation rates (𝛾𝐷𝑅 508 
= 𝛾𝑇𝑅 = 1.96 x 10-13) deviates markedly from the experimental measurements. (c) A509 

scenario with homogenous high conjugation rates (𝛾𝐷𝑅 = 𝛾𝑇𝑅 = 1.96 x 10-7) deviates510 
substantially from the experimental measurements. The data and code needed to 511 
generate this figure can be found at https://github.com/livkosterlitz/LDM or 512 
https://doi.org/10.5281/zenodo.6677158. 513 

514 
Section 4h : Violation of the Levin et. al. model Monod equation assumptions 515 

516 
In this section, we explored a violation of a modeling assumption in the SIM 517 

approach by using a model variation where the functional form of the growth rates and 518 
conjugation rates are not proportional. This is relevant given that there are plasmid 519 
systems that will readily violate this proportional assumption (e.g., IncP plasmids). Here, 520 
we assume that while growth rates follow the Monod equation, conjugation rates are not 521 
dependent on resource and remain constant after resources are depleted. We found that 522 
using this model and the same experimentally measured parameter values in Fig F 523 
resulted in a higher SIM estimate as the culture enters stationary phase (Fig Ga) 524 
compared to the scenario where conjugation rates are proportional to growth rates (Fig 525 
Gb). It is worth noting that by using this new model and these particular parameter values, 526 
the recipient pool is completely depleted which coincides with the SIM estimate no longer 527 
being a finite, positive value. This differs from Fig Gb where the SIM estimate hits an 528 
asymptote remaining at a finite, positive value. In this case, the recipient pool is not 529 
depleted because in this version of the model (Section 4f) the conjugation rates approach 530 
zero as the resources are depleted. We acknowledge that a violation of the proportional 531 
assumption would lead to an inflation of the SIM estimate, which is the same pattern we 532 
show in our experimental results in Fig 6. However, we used an IncF plasmid in our 533 
experiment which was the plasmid system used in the original SIM study where the 534 
experimental results were consistent with a proportional relationship. We note that this 535 
analysis is relevant to other plasmid systems where this assumption is known to be 536 
violated or has not been experimentally validated.   537 
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Fig G: Numerical simulation of a modified model with constant conjugation rates 538 
with Monod functions for growth. The same equations and parameters from Fig F are 539 
used throughout unless otherwise indicated. (a) A model modification is made where 540 
conjugation rates are no longer proportional to growth rates. Specifically, conjugation 541 
rates are constant (i.e., not resource dependent). (b) The same panel in Fig Fa for 542 
comparison. The data and code needed to generate this figure can be found at 543 
https://github.com/livkosterlitz/LDM or  https://doi.org/10.5281/zenodo.6677158. 544 

545 

Section 5 : Experimental volume unit conversion using 𝒇 546 
In this section, we walk through the addition of 𝑓 to the LDM estimate. This is 547 

important to maintain the typical units ml/(h ∙  cfu) used for reporting the conjugation 548 
rates. In the original differential equations [1]-[3], the units of the dynamic variables were 549 
cfu/ml. If we want to deal with numbers instead of density, the let us define a new volume 550 
unit termed the “evu” standing for “experimental volume unit” where we will assume there 551 
are 𝑓 evu’s per ml. Focusing on the number of donors in the experiment (which we label 552 

�̌�), we have the following conversion: 553 

�̌� (
cfu

evu
) =

𝐷 (
cfu
ml
)

𝑓
evu
ml

, 554 

Focusing on the numerical values (and ignoring the units for what follows), we have 555 

�̌� =
𝐷

𝑓
, 556 

�̌� =
𝑅

𝑓
, 557 

�̌� =
𝑇

𝑓
. 558 

In our original differential equations, let us multiply both sides of all the differential 559 
equations by 1/𝑓, yielding: 560 

1

𝑓

𝑑𝐷

𝑑𝑡
= 𝜓𝐷

1

𝑓
𝐷, 561 

1

𝑓

𝑑𝑅

𝑑𝑡
= 𝜓𝑅

1

𝑓
𝑅 − (𝛾𝐷𝐷 + 𝛾𝑇𝑇)

1

𝑓
𝑅, 562 

1

𝑓

𝑑𝑇

𝑑𝑡
= 𝜓𝑇

1

𝑓
𝑇 +  (𝛾𝐷𝐷 + 𝛾𝑇𝑇)

1

𝑓
𝑅. 563 

This can be reworked as 564 

𝑑�̌�

𝑑𝑡
= 𝜓𝐷�̌�, 565 

𝑑�̌�

𝑑𝑡
= 𝜓𝑅�̌� − (𝛾𝐷𝐷 + 𝛾𝑇𝑇)�̌�, 566 

𝑑�̌�

𝑑𝑡
= 𝜓�̌� + (𝛾𝐷𝐷 + 𝛾𝑇𝑇)�̌�. 567 

It follows that: 568 

𝑑�̌�

𝑑𝑡
= 𝜓𝐷�̌�, 569 

𝑑�̌�

𝑑𝑡
= 𝜓𝑅�̌� − (𝑓𝛾𝐷�̌� + 𝑓𝛾𝑇�̌�)�̌�, 570 

𝑑�̌�

𝑑𝑡
= 𝜓�̌� + (𝑓𝛾𝐷�̌� + 𝑓𝛾𝑇�̌�)�̌�. 571 

https://github.com/livkosterlitz/LDM
https://doi.org/10.5281/zenodo.6677158
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If we let 572 
�̌�𝐷 = 𝑓𝛾𝐷 , 573 

and 574 
�̌�𝑇 = 𝑓𝛾𝑇 . 575 

then the above system becomes 576 

𝑑�̌�

𝑑𝑡
= 𝜓𝐷�̌�, 577 

𝑑�̌�

𝑑𝑡
= 𝜓𝑅�̌� − (�̌�𝐷�̌� + �̌�𝑇�̌�)�̌�, 578 

𝑑�̌�

𝑑𝑡
= 𝜓�̌� + (�̌�𝐷�̌� + �̌�𝑇�̌�)�̌�. 579 

This set of equations tracks the number of cells (per evu). Thus, if the above equations 580 
were used, then the derivations of the LDM estimate could flow exactly like we show in 581 
Section 2. That is, the following will be correct: 582 

�̌�𝐷 = − ln 𝑝0(�̃�) (
𝜓𝐷 +𝜓𝑅

�̌�0�̌�0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

) 583 

Note, no correction is needed on 𝑝0(�̃�) as everything is in terms of numbers, which was584 

how this quantity was derived. Because �̌� =
𝐷

𝑓
 and �̌� =

𝑅

𝑓
, we can rewrite the above as 585 

�̌�𝐷 = − ln𝑝0(�̃�) (
𝜓𝐷 +𝜓𝑅

𝐷0
𝑓
𝑅0
𝑓
(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)

) 586 

Or: 587 
�̌�𝐷
𝑓
= 𝑓 {− ln 𝑝0(�̃�) (

𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

)} 588 

Because 𝛾𝐷 =
 𝛾𝐷

𝑓
, we have 589 

𝛾𝐷 = 𝑓 {− ln 𝑝0(�̃�) (
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

)} 590 

Note that if our evu was 1 ml, then 𝑓 = 1 and we could use our estimate exactly as written 591 

in equation [11]. Generally, we have to correct our original metric by multiplying by 𝑓.  592 
593 

Section 6 : Extended Experimental Methods and Results 594 
595 

Section 6a : Strains. 596 
597 

Escherichia coli K-12 BW25113 from the Top Lab was used as the ancestor of the 598 
three E. coli strains in this study. To derive the first strain, E. coli BW25113 was grown 599 
overnight and plated onto LB agar supplemented with 100 μg ml-1 streptomycin. A single 600 
streptomycin-resistant colony was selected and used to create an isogenic glycerol stock, 601 
E. coli K-12 BW25113 strR, to be used as the plasmid-free E. coli recipient in this study602 
(hereafter ‘E(Ø)’).603 

To derive the second strain, E. coli K-12 BW25113 was mixed with a host carrying 604 
the focal conjugative plasmid and incubated overnight in LB medium to facilitate plasmid 605 
transfer. The focal plasmid was the modified IncF conjugative plasmid F’42 (hereafter 606 
‘pF’) in which a tetracycline resistance gene was inserted using lambda red recombination 607 
(8). The mixture was plated onto LB agar supplemented with 100 μg ml-1 ampicillin (host 608 
selection) and 15 μg ml-1 tetracycline (pF plasmid selection) to select for E. coli K-12 609 
BW25113 host containing the pF plasmid. A single colony was selected and used to 610 
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create an isogenic glycerol stock to be used as the plasmid-containing E. coli donor in 611 
this study (hereafter ‘E(pF)’).  612 

To derive the third strain, E(pF) was mixed with E(Ø) and incubated overnight in 613 
growth medium to facilitate plasmid transfer. The mixture was plated onto LB agar 614 
supplemented with 100 μg ml-1 streptomycin (host selection) and 15 μg ml-1 tetracycline 615 
(plasmid selection) to select for E. coli K-12 BW25113 strR host containing the pF plasmid. 616 
A single colony was selected and used to create an isogenic glycerol stock to be used as 617 
a representative isogenic E. coli transconjugant in this study, hereafter ‘ET(pF)’ where the 618 
T subscript is added to distinguish this strain from the plasmid-bearing E. coli E(pF) strain, 619 
which is susceptible to streptomycin. 620 

The Klebsiella pneumoniae strain Kp08 from Jordt et. al. (9) was used as the 621 
ancestor for the K. pneumoniae strain in this study. Kp08 was grown overnight and plated 622 
onto LB agar supplemented with 30 μg ml-1 nalidixic acid. A single nalidixic-acid-resistant 623 
colony was selected and used to create an isogenic glycerol stock, K. pneumoniae Kp08 624 
nalR. Kp08 nalR was mixed with E(pF) and incubated overnight in growth medium to 625 
facilitate plasmid transfer. The mixture was plated onto LB agar supplemented with 30 μg 626 
ml-1 nalidixic acid (host selection) and 15 μg ml-1 tetracycline (plasmid selection) to select627 
for K.pneumoniae Kp08 nalR host containing the pF plasmid. A single colony was selected628 
and used to create an isogenic glycerol stock to be used as the plasmid-containing K.629 
pneumoniae donor in this study (hereafter ‘K(pF)’). See Table F for a quick overview of630 
the strains used in this study.631 

Table F: The strains used in this study. Antibiotic abbreviations are as follows: tet = 
tetracycline, str = streptomycin, and nal = nalidixic acid, and the ‘R’ superscript indicates 
drug resistance in the strain. 

Strain Host Plasmid 

E(pF) E. coli K-12 BW25113 F’42 tetR

K(pF) K. pneumoniae Kp08 nalR F’42 tetR

E(Ø) E. coli K-12 BW25113 strR None 

ET(pF) E. coli K-12 BW25113 strR F’42 tetR 

Section 6b : Growth rate assays. 632 
633 

The strains (Table F) were inoculated into LB medium from frozen glycerol stocks 634 
and grown overnight. The plasmid-containing cultures were supplemented with 15 μg ml-635 
1 tetracycline to select for maintenance of the plasmid. The saturated cultures were diluted 636 
100-fold into LB medium to initiate a second 24 hours of growth (in order to acclimate the637 
previously frozen strains to laboratory conditions). The acclimated cultures were then638 
diluted 10,000-fold into LB growth medium and dispersed into 27 wells in a deep-well639 
microtiter plate at a volume of 100 μl per well. Every hour, 30 μl was removed from three640 
wells to determine cell density via selective plating (Fig Ha). The three replicate plates641 
were averaged to estimate the cell density at each hour. The growth rates were calculated642 
by taking the slope of each neighboring time point using equation [1.12] (Fig Hb). Using643 
the growth rate calculated over time, an incubation time was chosen that coincided with644 
the population growing at or near the maximum growth rate for each strain to ensure645 
bacterial cultures entered the phase of maximal or close to maximal growth rate before646 
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the start of the conjugation assay. Thus, the growth rate estimates over time were used 647 
solely for determining the pre-assay growth period before the conjugation assay is 648 
executed and not to calculate the LDM estimate itself. A pre-assay growth period of 4 649 
hours was used for both donors, E(pF) and K(pF), and the recipient, E(Ø).   650 

Fig H: The change in density and resulting growth rates of the relevant strains. (a) 651 
Monocultures of K(pF), E(Ø), and E(pF) (red, blue, and, purple, respectively) were tracked 652 
over 9 hours of growth via plating. Bars indicate the standard error of the mean of three 653 
replicate cultures, but the standard error was so small in all cases that it is not visible in 654 
the plot. Note that at 3 hours a data point is missing for both K(pF) and E(Ø) due to plating 655 
error resulting in zero colonies and therefore no density estimate was available. (b) Using 656 
equation [1.12], the growth rates were calculated by taking the slope of a line connecting 657 
a focal point and the closest point earlier in time (in part a). This growth rate estimate is 658 
plotted at the focal point’s time (in part b). The data and code needed to generate this 659 
figure can be found at https://github.com/livkosterlitz/LDM or 660 
https://doi.org/10.5281/zenodo.6677158. 661 

662 
Section 6c : Minimum inhibitory concentration (MIC) assays. 663 

664 
The strains (Table F) were grown from glycerol stocks with two overnight 665 

incubations as previously described in Section 6b. The acclimated cultures were diluted 666 
100-fold into LB growth medium and dispersed into a column of wells in a deep-well plate667 
at a volume of 500 μl per well. Then 500 μl of dual-antibiotic medium (streptomycin and668 
tetracycline) was added to each well at increasing concentrations, forming a 2-fold669 
gradient across the column. We note that the ratio of the two antibiotics was kept constant670 
over the gradient. For each strain, this was repeated in three columns. After an overnight671 
incubation, the well with the lowest concentration of the dual antibiotic medium across all672 
replicates with no turbid growth was identified as the strain-specific MIC (Table G). The673 
concentration chosen for the transconjugant-selecting medium must be above the donor674 
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and recipient MIC, but below the transconjugant MIC. For this study, we proceeded with 675 
7.5 μg ml-1 tet + 25 μg ml-1 str.  676 

Table G: The dual-drug gradient MIC for the strains of interest. The antibiotics used 
in the gradient were specific to the resistance profile of the transconjugant ET(pF); 
streptomycin (str) and tetracycline (tet). The MIC data was used to identify the antibiotic 
concentration for the transconjugant-selecting medium used in both conjugation assays; 
cross- and within-species.  

Strain Cell type Str and tet gradient MIC 

E(pF) Donor 1.88 μg ml-1 tet + 6.25 μg ml-1 str 

K(pF) Donor 1.88 μg ml-1 tet + 6.25 μg ml-1 str 

E(Ø) Recipient 3.75 μg ml-1 tet + 12.5 μg ml-1 str 

ET(pF) Transconjugant 15 μg ml-1 tet + 50 μg ml-1 str 

Section 6d : Extinction probability assays. 677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 

705 
706 
707 
708 

A key component of the LDM conjugation protocol is differentiating parallel donor-
recipient co-cultures that contain transconjugants from those that do not. This is done by 
adding transconjugant-selecting medium prepared at antibiotic concentrations below the 
MIC of the transconjugant and above the MIC of the donor and recipient. Given the low 
numbers of transconjugants in the co-cultures, the results from a recent study of 
Alexander and MacLean (10) have high relevance. First, the authors show that levels of 
antibiotic below the MIC of the resistant strain are sufficient to decrease the chance of 
outgrowth with very low cell numbers (e.g., a single cell). In the context of our current 
study, if the concentration of antibiotics in the transconjugant-selecting medium is too 
high then co-cultures that contain transconjugants could produce a non-turbid culture 
because the transconjugant cell(s) fail to establish a lineage. Therefore, to avoid 
spurious non-turbid wells in the LDM protocol, the probability that a transconjugant cell 
fails to establish (the transconjugant extinction probability) should ideally be 0 in the 
transconjugant-selecting medium. Second, the authors show that the presence of a 
sufficiently dense sensitive cell population in the environment can decrease the extinction 
probability of the resistant type. In the context of our current study, the presence of 
donors and recipients in the cultures may decrease the transconjugant extinction 
probability. Overall, a non-zero transconjugant extinction probability could lead to 
a biased estimate of the conjugation rate; therefore, it needs to be explicitly checked.  

Inspired by the approach of Alexander and MacLean, we developed a similar 
approach to estimate the extinction probability of a transconjugant cell. First, we assume 
that a transconjugant cell has zero probability of extinction in antibiotic-free medium. 
While this assumption may be misplaced, it provides a starting point, and may itself be 
checked if there are reasons to doubt it holds. Second, we assume that a transconjugant 
cell has a specific probability of extinction in transconjugant-selecting medium with certain 
antibiotic concentrations given by the variable 𝑥, which is denoted 𝜋𝑥. Third, we assume 
that the lineage from every transconjugant cell in a population goes extinct independently. 
Consider a population of transconjugants distributed into many subpopulations containing 
transconjugant-selecting medium such that the average number of cells per 
subpopulation is initially 𝑇. Assuming an initial Poisson distribution, the fraction of 
subpopulations that leave zero transconjugant descendants, 𝑃𝑥 is: 709 
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𝑃𝑥 =∑
𝑒−𝑇𝑇𝑖

𝑖!

∞

𝑖=0

(𝜋𝑥)
𝑖 =

𝑒−𝑇

𝑒−𝑇𝜋𝑥
∑

𝑒−𝑇𝜋𝑥

𝑖!

∞

𝑖=0

(𝑇𝜋𝑥)
𝑖 = 𝑒−𝑇(1−𝜋𝑥).710 

By our assumption, when considering antibiotic-free medium, which we represent as 𝑥 =711 
0, we have 712 

𝑃0 = 𝑒−𝑇(1−𝜋0) = 𝑒−𝑇 .713 
Thus, it is the case 714 

𝑇 = − ln𝑃0. 715 
716 

Given that 717 

𝑃𝑥 = 𝑒ln𝑃0(1−𝜋𝑥),718 
we have a form to calculate the extinction probability in the transconjugant-selecting 719 
medium in the laboratory 720 

𝜋𝑥 = 1 −
ln𝑃𝑥
ln 𝑃0

, [6.1] 

where 𝑃𝑥 is the fraction of non-turbid wells with transconjugant-selecting medium and 𝑃0 721 
is the fraction of non-turbid wells with antibiotic-free medium.  722 

In the laboratory, we used the protocol implemented by Alexander and MacLean 723 
to estimate 𝜋𝑥 with a few adjustments. Briefly, the transconjugants were diluted (4 x 107724 
fold) and 50 μl aliquots were dispensed into all wells in a deep-well microtiter plate. For 725 
the antibiotic-free condition, the wells were filled with LB medium to a final volume of 1 726 
ml. For the transconjugant-selecting condition, the wells were filled with LB medium727 
supplemented with transconjugant-selecting antibiotics (7.5 μg ml-1 tet + 25 μg ml-1 str,728 
see Section 6c for details) to a final volume of 1 ml. Both deep-well plates were incubated729 
for 4 days. Using equation [6.1], we calculated a transconjugant extinction probability of730 
0.95 in the antibiotic concentration used for the transconjugant-selecting medium in this731 
study.732 

Given that the extinction probability was non-negligible (i.e., 𝜋𝑥 > 0), we ran a 733 
subsequent assay to estimate 𝜋𝑥 in the presence of sensitive cells (donors and recipients) 734 
at approximately the final densities that occur when the transconjugant-selecting medium 735 
is added for both mating assays (cross- and within-species, see Table H) reported in this 736 
study. This provided a more accurate 𝜋𝑥 for correcting the LDM estimate (see Section 7). 737 

In this experiment, the deep-well microtiter plates are prepared the same as above but 738 
supplemented with donor and recipient cells at the appropriate densities. As a result, we 739 
calculated mating-specific transconjugant extinction probabilities (Table H). These 740 
mating-specific transconjugant extinction probabilities (given in Table H) were used to 741 
correct the LDM estimate from each experimental replicate using equation [7.1]. 742 

Given the non-negligible extinction probability in the selective liquid medium, the 743 
extinction probability on the selective agar plates needed to be determined. We ran a 744 
subsequent assay to estimate 𝜋𝑥 for the donor-, recipient-, and transconjugant-selecting 745 
agar plates. Briefly, the monocultures of each strain were diluted (10-5 and 10-6) and 746 
plated onto antibiotic-free plates and the appropriate selecting plates. We used a slightly 747 
altered form for calculating the agar extinction probability  748 

𝜋𝑥 = 1 −
𝐶𝑥
𝐶0
, [6.2] 

where 𝐶𝑥 is the number of colonies on the antibiotic-infused plate and 𝐶0 is the number of 749 
colonies on the antibiotic-free plate for the same diluted culture. Using equation [6.2], we 750 
calculated each strain’s extinction probability (see Table I for the antibiotic concentration 751 
used in the selective agar plates in this study). These strain-specific extinction 752 
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probabilities were used to correct the density estimates from each experiment. We note 753 
that correcting the density estimates for the 24-hour data in 3 out of the 6 experiments 754 
resulted in negative estimates for the recipient density data. We can explain the negative 755 
estimates as follows. Given the high transconjugant extinction probability on the 756 
transconjugant-selecting agar plates (see Table I), the transconjugant density increases 757 
after the correction. Indeed, the transconjugant population can become more common 758 
than the “estimated” recipient population. We say “estimated” because there are no agar 759 
plates that select only for recipient cells. Specifically, the “recipient-selecting” agar plates 760 
allow for both recipient and transconjugant growth. To determine the recipient density, we 761 
subtract the transconjugant density from the density of cells calculated from the “recipient-762 
selecting” agar plate counts. When the transconjugants are more abundant than—or at 763 
relatively similar densities to—recipients, the exact recipient density cannot be 764 
determined due to its relative scarcity. Specifically, the subtractive plating scheme could 765 
result in a negative value. We note that this happens rarely given that transconjugant 766 
densities are typically orders of magnitude lower than recipients. In the cases of high 767 
conjugation rates and long incubation times, this issue is more likely to arise. If the 768 
recipient density went negative after subtraction, then the non-subtracted recipient 769 
density was used instead. An overestimate for recipient density leads to an underestimate 770 
for the SIM estimate at 24 hours; therefore, the differences between the cross-species 771 
LDM and SIM estimates shown in Fig 6 are conservative.  772 

This section highlights the importance of non-zero extinction probabilities in 773 
selective conditions in the laboratory. Therefore, the extinction probabilities in selective 774 
liquid-medium and selective-agar plates need to be explicitly checked. If the extinction 775 
probabilities are indistinguishable from zero in each selective condition used, then the 776 
user can proceed, and no adjustments are necessary. However, a non-zero extinction 777 
probability is likely and can be a source of bias if not considered. We recommend two 778 
solutions. The first is to find a selection condition where the extinction probability is 779 
indistinguishable from zero. This option leans on the result from the Alexander and 780 
MacLean study which shows that the antibiotic concentration being sufficiently below the 781 
MIC of the focal strain can lower the extinction probability to a point that is 782 
indistinguishable from zero. We recognize that this solution may not be possible. For 783 
instance, the donor and recipient MIC for the transconjugant-selecting condition may be 784 
too close to the transconjugant MIC, such that there are no antibiotic concentrations that 785 
yield a zero transconjugant extinction probability and still counterselect donors and 786 
recipients. In this case, the user would proceed with the second solution where the 787 
extinction probabilities are used to compute a corrected estimate. This second solution 788 
was used in this study (see Section 7).  789 

Table H: Mating-specific transconjugant extinction probabilities with 
transconjugant-selecting liquid medium. The donor and recipient densities were 
estimated using selective plating and were close to the final densities in the LDM 
conjugation protocol. Transconjugant-selective medium was prepared at the 
concentration used throughout the study (7.5 μg ml-1 tet + 25 μg ml-1 str). 

Mating Donor density Recipient density 𝝅𝒙 

within-species 
E(pF) to E(Ø) 

5 x 104 2 x 104 0.95 

cross-species 
K(pF) to E(Ø) 

1 x 108 7 x 106 0.93 
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Table I: Strain-specific extinction probabilities with selective-agar plates. Donor-, 
recipient-, and transconjugant-selective plates were prepared at concentrations that 
were used throughout the study (7.5 μg ml-1 tet, 25 μg ml-1 str, and 7.5 μg ml-1 tet + 25 
μg ml-1 str, respectively).  

Strain Selective-plate type 𝝅𝒙 

E(pF) Donor 0.30 

K(pF) Donor 0.21 

E(Ø) Recipient 0.55 

ET(pF) Transconjugant 0.99 

Section 6e : Choosing an incubation time and initial density for executing the 790 
LDM conjugation assay.  791 

792 
To find an incubation time and initial densities for executing the LDM protocol, all 793 

strains (Table F) were prepared using the procedure in Section 6b. We mixed 794 
exponentially growing donors and recipients in a large array of parallel co-cultures for a 795 
full factorial treatment of three initial densities and four incubation times (Fig Ia). We note 796 
that the resolution of initial densities and incubation times can be adjusted as needed. 797 
This is particularly useful if the conjugation rate is completely unknown. Alternatively, 798 
there could be good reasons for longer incubation times such as slow growth rates. For 799 
ease of explanation, we illustrate the protocol with a concrete example. Four columns 800 
were used for each initial density (104, 105, and 106 cells per ml) where 2 rows were used 801 
for each incubation time (0, 1, 2, and 3 hours) resulting in 8 wells per density-time 802 
treatment. For each dilution, the exponentially growing donor and recipient cultures were 803 
diluted by the specific factor, mixed at equal volumes, and dispensed into the wells in the 804 
corresponding four columns at a volume of 100 μl per well (Fig Ia, black-bordered wells). 805 
At each incubation time, 900 μl of transconjugant-selecting medium (7.5 μg ml-1 806 
tetracycline and 25 μg ml-1 streptomycin; see Section 6c and 6d) was added to each well 807 
in the corresponding two rows (Fig Ib, yellow-background). After the last time point (𝑡 = 3 808 
hours), the deep-well plate was incubated for 4 days. After the long incubation, we 809 
assessed the co-cultures within each time-density treatment for presence or absence of 810 
transconjugants by recording the turbidity (4 columns x 2 rows = 8 wells; Fig Ic). There 811 
were three outcomes possible for each time-density treatment: none of the co-cultures 812 
have transconjugants (gray-filled dot), all co-cultures have transconjugants (purple-filled 813 
dot), or there is both transconjugant-containing and transconjugant-free co-cultures (light-814 
purple dot). The goal is to identify a density-time combination with the last outcome (i.e., 815 
both turbid and non-turbid co-cultures). These treatments meet the �̂�0(�̃�) condition (i.e.,816 

0 < �̂�0(�̃�) < 1). As a general expectation, a high donor conjugation rate (𝛾𝐷) will require817 
shorter incubation times than a lower rate for a given initial density. For our matings 818 
(within- and cross-species), we found multiple density-time combinations that met the 819 
�̂�0(�̃�) condition. For the within-species mating assay, we chose a 103-fold dilution and an820 

incubation time of 1 hour and 15 minutes. For the cross-species mating assay, we chose 821 
the 103-dilution and a 4-hour incubation time.  822 

Even though multiple density-time treatments met the �̂�0(�̃�) condition, the final823 
choice could not be made without the information from the controls. Thus, an additional 824 
deep-well plate was created (Fig Id) to accompany the density-time plate containing the 825 
co-cultures (Fig Ia). This deep-well plate had the same factorial layout for densities (four 826 
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columns) and incubation times (two rows) except the 8 wells within each treatment are 827 
not exclusively co-cultures. 3 of the wells contained monocultures of the three strains. 828 
Specifically, 100 μl of donor, recipient and transconjugant cultures were each placed in 829 
their own well (Fig Id red-, blue- and purple-bordered wells). At a later point in the assay, 830 
these monocultures allowed us to determine that transconjugant-selecting medium 831 
prohibited growth of both donors and recipients, while permitting growth of 832 
transconjugants at each density-time treatment. An additional 2 wells contained 833 
monocultures of donors and recipients which are used to create a co-culture (in an empty 834 
well, dash-bordered well) during the assay itself at each incubation time (for each initial 835 
density). An additional 2 wells contained 100 μl of donor-recipient co-cultures which were 836 
used for selective plating to verify that the donors and recipients maintain a constant 837 
growth rate. At each incubation time, three events occurred in rapid succession. First, 30 838 
μl was removed from each of the wells used to determine densities via selective plating. 839 
Second, donor and recipient monocultures were mixed at equal volumes into the empty 840 
well (Fig Id, indicated by the gray arrows). Importantly, this well served as a control to 841 
verify that new transconjugant cells did not form via conjugation after transconjugant-842 
selecting medium was added. Third, 900 μl of transconjugant-selecting medium was 843 
added to the first row of wells at the relevant time point (yellow background). The deep-844 
well plate was incubated for 4 days. For the density-time combinations chosen, the control 845 
wells verified that the transconjugant-selecting medium operated as expected. In addition, 846 
the selective plating indicated the conditions under which the donors and recipients 847 
maintained constant growth.  848 
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Fig I: Overview for finding an incubation time and initial densities for executing the 849 
LDM. (a) the microtiter plate map designating the placement of the co-cultures over 10-850 
fold increases in initial densities (different shades of gray). For simplicity, donors and 851 
recipients are at the same proportion in each co-culture. (b) Using the microtiter plate 852 
from part a, transconjugant-selecting medium (yellow-background) is added at each time 853 
designated by two rows in the microtiter plate. Two example wells from different density-854 
time combinations are highlighted on the left. In the top example well, transconjugant-855 
selecting medium is added immediately, inhibiting growth of donor and recipient cells 856 
(grey dashed cells), and resulting in a non-turbid well as no transconjugants formed. In 857 
the bottom example well, the donor and recipient population in the co-culture grow until 858 
transconjugant-selecting medium is added at 3-hours, inhibiting growth of donors and 859 
recipients, and permitting growth of the formed transconjugants. (c) After a lengthy 860 
incubation of the microtiter plate from part b, there are two well-types in the microtiter 861 
plate (bottom-left): transconjugant-containing (purple-filled) and transconjugant-free 862 
(gray-filled). For each density-time treatment, the 8 mating wells are considered as a 863 
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group resulting in one of three outcomes (top): all transconjugant-free wells (gray dot), all 864 
transconjugant-containing wells (purple dot), a proportion of both well types (light-purple 865 
dot). Any treatment with a light-purple dot represents a viable combination of initial 866 
densities (𝐷0

′  and 𝑅0
′ ) and incubation time (�̃�′). (d) The microtiter plate with the control 867 

wells is set up with the same factorial layout used in part a except the 8 wells in each 868 
density-time treatment are not all co-cultures (black-bordered circles). Donor, recipient, 869 
and transconjugant monocultures serve as controls (red-, blue-, and purple-bordered 870 
wells, respectively). For the empty well (dash-bordered circles), donor and recipient 871 
monocultures are mixed into the empty well (indicated by grey arrows) to create a co-872 
culture control at each time point to verify that diluting with transconjugant-selecting 873 
medium effectively prevents conjugation. In addition, the co-cultures are sampled at each 874 
time point to uncover densities and determine whether donors and recipients maintain 875 
constant growth. Subsequently, transconjugant-selecting medium is added to the 876 
microtiter plate at the same times as the microtiter plate in part a. The control wells 877 
inoculated with transconjugants should be turbid (purple-filled) while the monocultures 878 
with donors and recipients should be non-turbid. In addition, the co-cultures created at 879 
each time point for the different initial density treatments should be non-turbid.  880 

881 

Section 7 : Probability generating function, low-order moments, and failure to 882 
establish 883 

884 
The aim of the first part of this section is to explore the connection between mutation and 885 
conjugation processes further. In the second part of this section, we derive a general 886 
expression for the LDM estimate that incorporates cases when the transconjugant doesn’t 887 
always establish a successful lineage (i.e., non-zero extinction probability).   888 

889 
Keller and Antal (11) studied a generalization of the process explored by Luria and 890 
Delbrück (12). To start, Keller and Antal consider a wildtype population expanding from a 891 
single cell as follows: 892 

𝑁𝑡 = 𝑓(𝑡) = 𝑒
𝛿𝑡 .893 

Each wildtype cell generates a mutant cell at a rate 𝜈′, which grows as a stochastic birth 894 

process with rate 𝛼 (Keller and Antal studied a supercritical birth-death process, but we 895 
will focus on the special case of a pure birth process). In this case, mutants form at a rate 896 
𝜈′𝑓(𝑡), such that the times of mutant arrival conform to a non-homogeneous Poisson 897 
process. We note that if we start with 𝑁0 cells, then mutants form at a rate 𝑁0𝜈′𝑓(𝑡).898 

Alternatively, we can set 𝜈 = 𝑁0𝜈′, such that mutants form at a rate 𝜈𝑓(𝑡), which is the899 
case explored by Keller and Antal. 900 

901 
Keller and Antal derive the probability generating function for the total number of mutants 902 
at an arbitrary time: 903 

𝐺(𝑧, 𝑡) = exp {
𝜈

𝛿
(𝐹 (1, 𝜅; 1 + 𝜅;

𝑧

𝑧 − 1
𝑒−𝛼𝑡) − 𝑒𝛿𝑡𝐹 (1, 𝜅; 1 + 𝜅;

𝑧

𝑧 − 1
))}, 904 

where 𝐹 is the Gaussian hypergeometric function and 𝜅 =
𝛿

𝛼
. 905 

906 
Our process of interest (the formation and growth of transconjugants) can be seen as an 907 
instance of their formulation by making the following substitutions: 908 

𝛿 = 𝜓𝐷 + 𝜓𝑅, 909 
𝜈 = 𝛾𝐷𝐷0𝑅0, 910 
𝛼 = 𝜓𝑇 . 911 
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With these substitutions, the generating function becomes: 912 

𝐺(𝑧, 𝑡) = exp {
𝛾𝐷𝐷0𝑅0
𝜓𝐷 + 𝜓𝑅

(𝐹 (1,
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 +𝜓𝑅
𝜓𝑇

;
𝑧

𝑧 − 1
𝑒−𝜓𝑇𝑡)913 

− 𝑒(𝜓𝐷+𝜓𝑅)𝑡𝐹 (1,
𝜓𝐷 +𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 +𝜓𝑅
𝜓𝑇

;
𝑧

𝑧 − 1
))}. 914 

Because 915 

𝐺(𝑧, 𝑡) = ∑𝑝𝑛(𝑡)𝑧
𝑛

∞

𝑛=0

, 916 

the probability of zero transconjugants now becomes straightforward (given 917 

𝐹 (1,
𝜓𝐷+𝜓𝑅

𝜓𝑇
; 1 +

𝜓𝐷+𝜓𝑅

𝜓𝑇
; 0) = 1): 918 

𝑝0(𝑡) = 𝐺(0, 𝑡) = exp {
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 + 𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)}, 919 

which agrees with the result from Section 2. 920 
921 

Making the appropriate substitutions, we can also write the mean and variance (eqs. 8 922 
and 9 from Keller and Antal) for the transconjugants: 923 

924 

𝐸[𝑇𝑡] = {

𝛾𝐷𝐷0𝑅0𝑒
(𝜓𝐷+𝜓𝑅)𝑡𝑡  if 𝜓𝐷 +𝜓𝑅 = 𝜓𝑇

𝛾𝐷𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 𝑒𝜓𝑇𝑡)

𝜓𝐷 +𝜓𝑅 −𝜓𝑇
 if 𝜓𝐷 +𝜓𝑅 ≠ 𝜓𝑇

925 

Var[𝑇𝑡]926 

=

{

2𝛾𝐷𝐷0𝑅0(𝑒
2(𝜓𝐷+𝜓𝑅)𝑡 − 𝑒(𝜓𝐷+𝜓𝑅)𝑡)

𝜓𝐷 + 𝜓𝑅
− 𝛾𝐷𝐷0𝑅0𝑒

(𝜓𝐷+𝜓𝑅)𝑡𝑡  if 𝜓𝐷 + 𝜓𝑅 = 𝜓𝑇

2𝛾𝐷𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡/2 − 𝑒(𝜓𝐷+𝜓𝑅)𝑡)

𝜓𝐷 + 𝜓𝑅
+ 2𝛾𝐷𝐷0𝑅0𝑒

(𝜓𝐷+𝜓𝑅)𝑡𝑡  if 𝜓𝐷 +𝜓𝑅 = 2𝜓𝑇

𝛾𝐷𝐷0𝑅0 {
2𝑒2𝜓𝑇𝑡(𝜓𝑇 − (𝜓𝐷 +𝜓𝑅)) − 𝑒

𝜓𝑇𝑡(2𝜓𝑇 − (𝜓𝐷 +𝜓𝑅)) + (𝜓𝐷 + 𝜓𝑅)𝑒
(𝜓𝐷+𝜓𝑅)𝑡

(2𝜓𝑇 − (𝜓𝐷 + 𝜓𝑅))(𝜓𝑇 − (𝜓𝐷 +𝜓𝑅))
} otherwise

 927 

We provide derivations for these expressions in GitHub Appendix VI. In all cases, the 928 
variance grows relative to the mean over time (see GitHub Appendix VII for the 929 
derivations). 930 

931 
In our experiment, at time �̃�, medium selecting for transconjugants is added to every 932 
mating culture. If every transconjugant always establishes a successful lineage, then 933 
every mating culture with one or more transconjugant cells at time �̃� will produce a turbid 934 
culture after a lengthy incubation. A more realistic scenario would be to assume that every 935 
transconjugant cell fails to establish a lineage with some probability, which we call 𝜋. If 936 
failure to establish occurs independently for each transconjugant, then the probability of 937 
a non-turbid culture after incubation (𝑃nt) when selective medium was added at time �̃� is: 938 

𝑃nt =∑𝑝𝑛(�̃�)𝜋
𝑛.

∞

𝑛=0

939 

However, this is equivalent to an appropriate evaluation of the generating function: 940 
𝑃nt = 𝐺(𝜋, �̃�).941 

This can be rewritten as 942 
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𝑃nt = exp {
𝛾𝐷𝐷0𝑅0
𝜓𝐷 + 𝜓𝑅

(𝐹 (1,
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 +𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
𝑒−𝜓𝑇𝑡)943 

− 𝑒(𝜓𝐷+𝜓𝑅)𝑡𝐹 (1,
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
))}. 944 

Solving for 𝛾𝐷 yields 945 
946 

𝛾𝐷 =
−ln (𝑃nt)(𝜓𝐷 + 𝜓𝑅)

𝐷0𝑅0
(𝑒(𝜓𝐷+𝜓𝑅)𝑡𝐹 (1,

𝜓𝐷 +𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
)947 

− 𝐹 (1,
𝜓𝐷 +𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
𝑒−𝜓𝑇𝑡))

−1

948 

If the values of 𝐷0 and 𝑅0 are not the total initial numbers, but cell densities (cfu/ml) in 949 
some volume for the mating culture (such that there are 𝑓 experimental volumes per ml) 950 

and we wish to measure conjugation rate in units ml/(h ∙  cfu), then must add a correction 951 
factor (see Section 5), yielding 952 

𝛾𝐷 = 𝑓
−ln (𝑃nt)(𝜓𝐷 + 𝜓𝑅)

𝐷0𝑅0
(𝑒(𝜓𝐷+𝜓𝑅)𝑡𝐹 (1,

𝜓𝐷 +𝜓𝑅
𝜓𝑇

; 1

+
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
)

− 𝐹 (1,
𝜓𝐷 +𝜓𝑅
𝜓𝑇

; 1 +
𝜓𝐷 + 𝜓𝑅
𝜓𝑇

;
𝜋

𝜋 − 1
𝑒−𝜓𝑇𝑡))

−1

[7.1] 

First of all, we note that if every transconjugant establishes a lineage (i.e., 𝜋 = 0), then 953 
𝑃nt = 𝑝0(�̃�) and equation [7.1] reduces to954 

𝛾𝐷 = 𝑓
−ln (𝑝0(�̃�))(𝜓𝐷 + 𝜓𝑅)

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

, 955 

which, using the maximum likelihood estimate for 𝑝0(�̃�), can be rewritten as956 

𝛾𝐷 = 𝑓 {
1

�̃�
[− ln �̂�0(�̃�)]

ln𝐷𝑡𝑅𝑡 − ln𝐷0𝑅0
𝐷𝑡𝑅𝑡 − 𝐷0𝑅0

}, 957 

and this is simply equation [13]. 958 
959 

However, equation [7.1] is the more general expression. In Section 6d, we discuss a 960 
method for estimating 𝜋. The maximum likelihood estimate for 𝑃nt is the fraction of empty 961 
wells in the LDM protocol. Before, we called this �̂�0(�̃�), however, when there is positive962 

probability that a transconjugant cell fails to establish (i.e., 𝜋 > 0), then generally 𝑃nt >963 

𝑝0(�̃�). Thus, we will denote the maximum likelihood estimate as �̂�nt (the fraction of non-964 
turbid wells). 965 

966 
If we let the density of transconjugants in a monoculture at times 0 and �̃� be 𝑇0

𝑚 and 𝑇𝑡
𝑚,967 

respectively (see Section 6b) the following is the more general conjugation rate estimate 968 
(where all growth rates have been converted into estimated densities): 969 

𝛾𝐷 = 𝑓
−ln (�̂�nt)ς

�̃�
(𝐷𝑡𝑅𝑡𝐹 (1, 𝜅; 1 + 𝜅;

𝜋

𝜋 − 1
)

− 𝐷0𝑅0𝐹 (1, 𝜅; 1 + 𝜅;
𝜋

𝜋 − 1

𝑇0
𝑚

𝑇�̃�
𝑚))

−1 [7.2] 
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with 970 
ς =  ln𝐷𝑡𝑅𝑡 − ln𝐷0𝑅0, 971 

and 972 

𝜅 =
ς

ln𝑇𝑡
𝑚 − ln 𝑇0

𝑚 =
ln𝐷𝑡𝑅𝑡 − ln𝐷0𝑅0
ln𝑇𝑡

𝑚 − ln 𝑇0
𝑚 . 973 

974 

Section 8 : Variance in Estimates 975 
Here we will focus on two estimates, ASM and LDM, and ask about their variance 976 
(enabling us to compare precision). We will focus exclusively on the contributions to this 977 
variance coming from the stochasticity in the transconjugant numbers (i.e., ignoring 978 
contributions coming from assessment of initial and final donor and recipient populations). 979 
Details on some of the derivations in this section are given in Github Appendix VII. 980 

981 
We start with the ASM estimate (here we express the estimate in terms of growth rate 982 
parameters): 983 

𝛾𝐷 =
𝜓𝐷 +𝜓𝑅 − 𝜓𝑇

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 𝑒𝜓𝑇𝑡)

𝑇𝑡 . 984 

Because we are only focusing on the contribution of the transconjugant variation, all 985 
parameters (initial densities and growth rates will be taken to be fixed). Thus, we can think 986 
about the ASM estimate as a random variable ΓASM, where 987 

ΓASM = 𝑐1𝑇�̃� , 988 
where the constant 𝑐1 is 989 

𝑐1 =
𝜓𝐷 +𝜓𝑅 − 𝜓𝑇

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 𝑒𝜓𝑇𝑡)
. 990 

The variance of the ASM estimate is then 991 
var(ΓASM) = 𝑐1

2{var(𝑇�̃�)}. 992 
But we have a closed form expression for var(𝑇𝑡). If 𝜓𝑇 ∉ {𝜓𝐷 + 𝜓𝑅, (𝜓𝐷 +𝜓𝑅)/2}, we993 

have  994 
var(ΓASM)995 

=
𝛾𝐷(𝜓𝐷 +𝜓𝑅 −𝜓𝑇)

𝐷0𝑅0
{
(𝜓𝐷 + 𝜓𝑅)𝑒

(𝜓𝐷+𝜓𝑅)𝑡 + (𝜓𝐷 + 𝜓𝑅 − 2𝜓𝑇)𝑒
𝜓𝑇𝑡 − (𝜓𝐷 + 𝜓𝑅 −𝜓𝑇)2𝑒

2𝜓𝑇𝑡

(𝜓𝐷 +𝜓𝑅 − 2𝜓𝑇)(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 𝑒𝜓𝑇𝑡)
2 }. 996 

The formulas for 𝜓𝑇 = 𝜓𝐷 + 𝜓𝑅 and 2𝜓𝑇 = 𝜓𝐷 +𝜓𝑅 could also be derived via simple 997 

substitution (note, lim
𝜓𝑇→𝜓𝐷+𝜓𝑅

𝑐1 = 1/(𝐷0𝑅0𝑡𝑒
(𝜓𝐷+𝜓𝑅)𝑡). These formulas allow us to project 998 

variance in the ASM estimate over time due to transconjugant variation if all parameters 999 
are known. 1000 

1001 
We now turn to the LDM estimate: 1002 

𝛾𝐷 = − ln �̂�0(�̃�) (
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

). 1003 

What we actually measure is the number of populations (or wells) that have no 1004 
transconjugants (call this 𝑤) out of the total number of populations (or wells) tracked (call 1005 
this W).  As we show in Github Appendix IV, the maximum likelihood estimate of 𝑝0(�̃�) is1006 

�̂�0(�̃�) =
𝑤

W
. 1007 

Of course, from experiment to experiment, there will be variance in the number of 1008 
populations with no transconjugants. Let us consider a random variable 𝐹, which 1009 

represents the fraction of total populations that have no transconjugants.  The expectation 1010 
of 𝐹 is (we drop the time argument for notational convenience): 1011 
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E[𝐹] = 𝑝0.1012 
The second central moment of 𝐹 is 1013 

var[𝐹] =
𝑝0(1 − 𝑝0)

W
. 1014 

Because we are only focusing on the contribution of the transconjugant variation, all 1015 
parameters (initial densities and growth rates will be taken to be fixed). Thus, we can think 1016 
about the LDM estimate as a random variable ΓLDM,  1017 

ΓLDM = 𝑐2 ln 𝐹, 1018 
where the constant 𝑐2 is 1019 

𝑐2 = −(
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

). 1020 

1021 
The variance of the LDM estimate is then 1022 

var(ΓLDM) = 𝑐2
2{var(ln𝐹)}.1023 

Here we use a first-order Taylor series approximation for ln 𝐹 centered at E[𝐹]: 1024 

ln 𝐹 ≈
𝐹

E[𝐹]
+ ln(E[𝐹]) − 1.1025 

And we have 1026 

var[ln 𝐹] ≈
1

W
(
1

𝑝0
− 1).1027 

This approximation will be accurate when the deviation between 𝐹 and E[𝐹] is very small 1028 

(i.e., 
|𝐹−E[𝐹]|

E[𝐹]
≪ 1). As W (the number of replicate populations in the experiment) gets large,1029 

the distribution of 𝐹 will tighten around E[𝐹], making the approximation more reasonable. 1030 
1031 

Now, we have the following expression for 𝑝0 (reintroducing the time argument): 1032 

𝑝0(�̃�) = exp {
−𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)} .1033 

Therefore, 1034 

var[ln 𝐹𝑡] ≈
1

W
(exp {

𝛾𝐷𝐷0𝑅0
𝜓𝐷 + 𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)} − 1),1035 

where we make the time dependence of 𝐹 clear. Returning to the variance for the LDM 1036 

estimate, 1037 

var(ΓLDM) ≈
1

W
(

𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

)

2

(exp {
𝛾𝐷𝐷0𝑅0
𝜓𝐷 +𝜓𝑅

(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)} − 1).1038 

1039 
If we define 1040 

𝜉𝑡 =
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

, 1041 

then we have 1042 

var(ΓLDM) ≈
𝜉𝑡
2

W
(𝑒

(
𝛾𝐷
𝜉�̃�
)
− 1).1043 

1044 
In Fig J, we explore the variances (approximate in the case of LDM) as a function of time. 1045 
The LDM estimates (for two different numbers of populations) are more precise (lower 1046 
variance) for much of the time range. However, if the time gets too high (�̃� ≈ 5 for the 1047 
parameter set shown in Fig J), then the LDM variance blows up (while the ASM variance 1048 
remains very low). In a case like this, the LDM is predicted to be more precise when the 1049 
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time of the assay is sufficiently low. In GitHub Appendix VII, we demonstrate this precision 1050 
advantage for the LDM estimate mathematically. Also in GitHub Appendix VII, we derive 1051 
an approximation for the variance for the SIM estimate, which demonstrates that the 1052 
variances for the SIM and ASM estimates are extremely similar.  1053 

Fig J : The variance of the ASM (green) and LDM (brown) estimates. Different 1054 
numbers of populations (W) are used for the LDM estimates, as indicated.  The 1055 

parameters used here are 𝛾𝐷 = 10
−12, 𝐷0 = 𝑅0 = 10

4, 𝜓𝐷 = 1, and 𝜓𝑅 = 𝜓𝑇 = 1.5.1056 
1057 

As illustrated in Fig J, the variance in the LDM estimate changes with the number of 1058 
populations (W). How does this number affect the variance in the LDM estimate? Here 1059 
we use simulations to further explore this question. In Fig Ka, we present the variance of 1060 
LDM estimates as a function of incubation time (�̃�) and the number of populations (W). 1061 
Generally, as the number of populations decreases or as the boundaries of the time 1062 
interval are approached (where nearly none or all of the populations have 1063 
transconjugants) the variance in the LDM estimate rises. The exception seems to be for 1064 
times that are very long, but the low variance is likely a result of having many infinite 1065 
estimates that are not included in the estimate variance (Fig Kb). Both infinite estimates 1066 
(Fig Kb) and zero estimates (Fig Kc) are more likely as the number of populations 1067 
decreases; in other words, the interval of incubation times producing non-zero finite 1068 
estimates increases with the number of populations. Generally, the greater the number 1069 
of populations and the more intermediate the incubation time (e.g., where approximately 1070 
half of the populations have transconjugants), the lower the variance. 1071 

1072 
Suppose an experimenter is considering some number of wells (populations) and wants 1073 
to decide how many estimates to produce. For instance, with 500 wells, the experimenter 1074 
could decide to run a single LDM assay and obtain a single estimate (with W = 500) or 1075 
perhaps instead could run 5 assays (with W = 100), 10 assays (with W = 50), 50 assays 1076 
(with W = 10) or 100 assays (with W = 5) for 5, 10, 50, and 100 estimates, respectively. 1077 

Does it make a difference to the precision or accuracy to split or lump wells? Here we 1078 
explore this question through simulation. How do we compare different partitions of wells? 1079 
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Let us consider some total number of wells, call this W∗, and consider some factor of W∗, 1080 
which we will call W′; i.e., W∗/W′ = 𝑛, where 𝑛 is an integer. Here we will compare a 1081 

single estimate with W∗ wells with the mean of 𝑛 estimates that each use W′ wells. Thus, 1082 
for Fig Kd, each point for W = 500 is a single estimate, where each point for W = 5, W =1083 
10, W = 50, and W = 100 is the mean of 100, 50, 10, and 5 estimates, respectively. With 1084 
these comparisons in mind, we see two slight effects of different partitioning patterns. 1085 
First, the variance is a bit higher for the single estimate coming from the largest number 1086 
of wells. We attribute this shift to the fact that other quantities involved in the estimate 1087 
(e.g., density of donors and recipients) are only being computed once for each point for 1088 
W = 500 in Fig Kd, whereas these quantities are being computed multiple times for 1089 
smaller W values, such that anomalous values would tend to get muted as the estimates 1090 

were averaged. The second effect is a more notable one. We see that as the number of 1091 
wells per estimate goes down, slight inaccuracies in the estimate start to occur. Why does 1092 
this happen? 1093 

1094 
To answer this question, let us consider the LDM estimate: 1095 

1096 

𝛾𝐷 = − ln 𝑝0(�̃�) (
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

) 1097 

1098 
The main thing that will be affected by the number of populations is 𝑝0(�̃�). Specifically, as1099 
W decreases, the variance in the fraction of populations without transconjugants 1100 
increases. Suppose that we have 𝑛 LDM estimates under consideration, and for each one 1101 

a value �̂�0(�̃�) is needed. Here we define:1102 
1103 

�̂�0(�̃�)̅̅ ̅̅ ̅̅ ̅ =
∑ �̂�0,𝑖(�̃�)
𝑛
𝑖=1

𝑛
, 1104 

1105 

where �̂�0,𝑖(�̃�) is the fraction of populations without transconjugants for the 𝑖th estimate.1106 

Now, by Jensen’s inequality, we have: 1107 
1108 

− ln {
∑ �̂�0,𝑖(�̃�)
𝑛
𝑖=1

𝑛
} (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

) <
1

𝑛
∑− ln �̂�0,𝑖(�̃�) (

𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

)

𝑛

𝑖=1

1109 

1110 

− ln �̂�0(�̃�)̅̅ ̅̅ ̅̅ ̅ (
𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

) <
1

𝑛
∑− ln �̂�0,𝑖(�̃�) (

𝜓𝐷 +𝜓𝑅

𝐷0𝑅0(𝑒
(𝜓𝐷+𝜓𝑅)𝑡 − 1)

)

𝑛

𝑖=1

1111 

1112 

As W gets large, the value �̂�0(�̃�) is close to �̂�0(�̃�)̅̅ ̅̅ ̅̅ ̅ for smaller W values. Thus, using the1113 
terminology from above: 1114 

1115 

𝛾𝐷[W
∗] <

1

𝑛
∑𝛾𝐷[W′𝑖],

𝑛

𝑖=1

1116 

1117 
where 𝛾𝐷[W

∗] is the conjugation rate for the largest number of wells (W∗), and 𝛾𝐷[W′𝑖] is1118 
the conjugation rate for the 𝑖th assay using a smaller number of wells (W′). Thus, we see 1119 
that as we partition wells into smaller numbers per estimate, the mean estimate will rise, 1120 
which is what we see in Fig Kd. Consequently, we recommend a reasonably large number 1121 
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of wells in the LDM assay. A number between 50 and 100 appears sufficient to avoid 1122 
inaccuracy and is also convenient when using a microtiter plate format for populations. 1123 

Fig K: The variance of LDM estimates using stochastic simulation. Different number 1124 
of populations (W) are used for the LDM estimates, as indicated. The parameters used 1125 
here are the same baseline parameters in Fig A which were 𝜓𝐷 = 𝜓𝑅 =  𝜓𝑇 = 1, and 1126 

𝛾𝐷 = 𝛾𝑇 = 10
−6. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  10

2 and 𝑇0 = 0.1127 
(a) The variance among the 100 estimates is given at 15-minute intervals where more1128 
than 1 out of the 100 calculated estimates produced a finite non-zero value. We ignore1129 
infinite estimates in the calculation of the variance. (b) The number of estimates with an1130 
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infinite value out of the 100 calculated. (c) The number of estimates with a zero value out 1131 
of the 100 calculated. (d) A total of 500 populations is partitioned in different ways—split 1132 
into 100 groups of 5 populations (W=5), 50 groups of 10 populations (W=10), 10 groups 1133 
of 50 populations (W=50), 5 groups of 100 populations (W=100), or a single group of 500 1134 
populations (W=500). Each plotted point is the mean conjugation rate of the rates 1135 
calculated for each group (where the number of populations within each group vary as 1136 
indicated by the W value) at a specific incubation time (�̃� = 2.35) selected using the criteria 1137 
described in the Materials and Methods. We ran the partitioning analysis 10 times using 1138 
a new set of 500 populations. The data and code needed to generate this figure can be 1139 
found at https://github.com/livkosterlitz/LDM or  https://doi.org/10.5281/zenodo.6677158. 1140 

1141 

Section 9 : Random effects on estimate accuracy and precision 1142 
1143 

In this section we explore, through simulation, some of the consequences of other random 1144 
effects on the LDM and SIM estimates. Some of these effects are a consequence of 1145 
experimental protocols. For instance, both approaches require dilution and plating in the 1146 
laboratory to estimate donor and recipient density (and the SIM approach also uses 1147 
dilution and plating to estimate transconjugant density). Because dilution and plating are 1148 
subject to random sampling effects, there will be density-estimation errors introduced by 1149 
these procedures. Other random effects are features of the cells under study. As we 1150 
describe in Section 6d and 7, there can be a non-zero probability that any cell will fail to 1151 
establish a lineage. For instance, a donor cell may fail to form a colony on a plate after 1152 
incubation on selective medium, or a lone transconjugant cell in a well may fail to yield a 1153 
turbid culture after incubation in selective medium. Again, there will be stochasticity in the 1154 
number of cell lineages that go extinct, which will lead to error in calculating key quantities 1155 
needed for the estimates (even with corrections). Here we explore the consequences of 1156 
some of these random effects. 1157 

1158 
Random effects in dilution, plating, and failure to form colonies: We ran our stochastic 1159 
simulations as before (Section 4), but instead of using the simulated numbers of cells 1160 
directly for our estimates, we wrote a dilution-plating subroutine to simulate how cell 1161 
density would be gauged in the lab. Suppose that a cell population has an actual density 1162 

of 𝑁0 cells/mL. A 10-fold dilution series is generated recursively by diluting 100L into 1163 

900L. Thus, the density of cells in the first dilution is: 1164 
1165 

𝑁−1 = 𝑟𝑣[Poisson(0.1𝑁0)]1166 

1167 
where 𝑟𝑣[𝑑] is a random value for a variable with a distribution given by 𝑑. The density of 1168 
cells in the second dilution is: 1169 

1170 
𝑁−2 = 𝑟𝑣[Poisson(0.1𝑁−1)].1171 

1172 
More generally, the 𝑖th dilution has density: 1173 

1174 

𝑁−𝑖 = 𝑟𝑣[Poisson(0.1𝑁−(𝑖−1))] 1175 

1176 

Now 100L of each dilution in the entire series is plated, where the number of bacterial 1177 
cells from the 𝑖th dilution landing on the plate is: 1178 

1179 
𝐵−𝑖 = 𝑟𝑣[Poisson(0.1𝑁−𝑖)]1180 
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1181 
Finally, the number of colonies forming (given an extinction probability of 𝜋) on the 𝑖th 1182 
dilution plate is: 1183 

1184 
𝐶−𝑖 = 𝑟𝑣[Binomial(𝐵−𝑖, 1 − 𝜋)]1185 

1186 
We pick the dilution plate with the maximum number of colonies in the range between 30 1187 
and 300. If every dilution plate is below 30 colonies, we simply use the plate with the 1188 
maximum number of colonies. For generality, let’s suppose we select the 𝑖th dilution plate. 1189 
We compute the cell density of the undiluted culture as: 1190 

1191 

𝑁est =
𝐶−𝑖
1 − 𝜋

× 10𝑖+1  
cells

mL
1192 

1193 
Given the random effects of dilution, plating, and cell lineage extinction, it is likely that 1194 
𝑁est will deviate from the actual cell density 𝑁0. 1195 

1196 
For the SIM estimate, we use this procedure to generate the density of donors, recipients 1197 
and transconjugants that are used in the estimate. For the LDM estimate, we use this 1198 
procedure to generate the density of donors and recipients that are used in the estimate. 1199 
Also, if the extinction probability of transconjugants in the wells is non-zero, we must also 1200 
track a monoculture of transconjugants in order to estimate the transconjugant growth 1201 
rate needed for the LDM correction (equation [7.1]), and we use the above procedure to 1202 
estimate the transconjugant densities in these cases. 1203 

1204 
Random effects in wells with transconjugants: However, we also need to calculate the 1205 
fraction of wells with transconjugant-selecting medium that are not turbid for the LDM 1206 
estimate. Here the actual simulated number of transconjugants in a given population at 1207 
the end of the assay is 𝑇𝑡. The number of lineages that do not go extinct is 1208 

1209 
𝐿−𝑖 = 𝑟𝑣[Binomial(𝑇𝑡 , 1 − 𝜋)]1210 

1211 
If 𝐿−𝑖 > 0, then the well is turbid, whereas if 𝐿−𝑖 = 0, then the well is non-turbid. The 1212 
proportion of non-turbid wells out of a total of W wells (𝑃nt) can then be calculated. If we 1213 
have this quantity and all the relevant cell densities, we can then use equation [7.2] to 1214 
calculate the corrected LDM estimate. 1215 

1216 
Results: We show the results of adding these random effects in Fig L. Each rectangle 1217 
represents 100 estimates for a combination of the incubation time (�̃�) and an extinction 1218 
probability (𝜋), which, for simplicity, we assume is the same for all cell types both on plates 1219 

and in wells. For reference, estimates without the random effects of dilution, plating, and 1220 
extinction are given in the bottom row of each plot. Estimates with the random effects of 1221 
only dilution and plating can be found in the row with zero extinction probability in each 1222 
plot. We note that as the extinction probability increases, the end point of the assay must 1223 
also increase (to obtain sufficient colonies and turbid wells), thus, the range of incubation 1224 
times shift with this quantity.  1225 

1226 
As random effects are added, both the LDM and SIM estimates of the donor conjugation 1227 
rate tend to deviate more from the actual value, but there is not systematic deviation (Fig 1228 
La). Not surprisingly, as random effects are added, the variance in estimates rises, but 1229 
this effect is more pronounced for the SIM estimate (Fig Lb). For both approaches, a zero 1230 
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estimate is possible (when there are no transconjugant colonies or no turbid 1231 
transconjugant wells) and for the LDM estimate an infinite estimate is possible (when all 1232 
the transconjugant wells are turbid). However, we see these extreme values occur 1233 
primarily at the boundaries of the time interval for incubation times (Fig Lc and Ld). 1234 

Fig L : The random effects of dilution, plating, and failure to establish on the 1235 
accuracy and variance of the LDM and SIM estimates. Different extinction probabilities 1236 
are used, as indicated. The parameter values and initial densities are the same as Fig Ea 1237 
which were 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 =  1 and 𝛾𝐷 =  𝛾𝑇 = 1 ×  10

−14. The dynamic variables were1238 
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initialized with 𝐷0 = 𝑅0 = 10
5 and 𝑇0 = 0. The scenario with no dilution plating and a zero-1239 

extinction probability (the bottom row in each panel) is the data from Fig Ea. The mean 1240 
deviation (a) and variation (b) of each set of estimates is given at 15-minute time intervals 1241 
where at least 75 out of the 100 calculate estimates produced a finite non-zero value. (c) 1242 
The number of infinite estimates out of the 100 calculated in the relevant intervals. (d) 1243 
The number of estimates with a zero value out of the 100 calculated in the relevant 1244 
intervals. We note that the Gillespie algorithm is computationally expensive when the 1245 
densities get very large. Therefore, due to the longer incubation times needed for the SIM, 1246 
only 100 populations of the 10,000 were simulated through the later time intervals until 1247 
on average a population density of 1 x 109 is reached (i.e., �̃� = 8.5 h). The remaining 9,900 1248 
populations, used to compute �̂�0(�̃�) for the LDM, were run until an average of 1001249 

transconjugants was reached (i.e., �̃� = 6.9 h). This explains the truncation of the SIM 1250 
estimates at 8.5 hours and the LDM estimates 6.75 hours, which is most notable in the 1251 
scenario where the extinction probability is 0.99. The data and code needed to generate 1252 
this figure can be found at https://github.com/livkosterlitz/LDM or 1253 
https://doi.org/10.5281/zenodo.6677158.  1254 
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