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Overview: 
 In this document we provide the full details of our experimental and theoretical methods 
and results.  We have divided this supplement into five sections.  Section I (Supplemental 
Methods) focuses on experimental protocol, the derivation of mathematical quantities used in 
laboratory assays, and statistical analysis of experimental data.  Section II (The Evidence for 
Phage Evolution) describes the observations that led us to propose that evolution of phage had 
occurred.  Section III (Configuration Field Approximation) outlines an analytical approach to 
predicting metapopulation dynamics and compares this approach to stochastic cellular automata.  
Section IV (Small Lattice Simulations) explores the behavior of simulated metapopulations that 
are built to match the size of our experimental metapopulations exactly, which allows us to choose 
parameter settings for the experiment and make more specific predictions that take into account 
demographic stochasticity.  Section V (Evolutionary Model) builds on section III and the Box to 
include the evolution of phage strategies within the modeling framework. 
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I. Supplemental Methods 

 
Section Overview: 
 In this section we spell out all of our methods in detail, including a recipe list, a full 
description of and rationale behind the experimental approach, some supporting protocols, 
mathematical derivation of useful quantities (such as competition indices and number of microbial 
generations) and statistical analysis and results.  
 
Media recipes: 

1) Growth Media: 
Potassium Phosphate Dibasic   7g 
Potassium Phosphate Monobasic   2g 
Ammonium Sulfate     1g 
10% Glucose Solution    10mL 
10% Magnesium Sulfate   1mL 
0.2% Thiamine    1mL 
100mg/mL Streptomycin   1mL 
100mg/mL Novobiocin   1mL 

 Distilled water     1000mL  
 

The growth media filling the microtitre plates (used in the experimental runs and the 
assays) was the minimal glucose recipe given above.  The streptomycin was added to 
prevent contamination and the novobiocin was added to limit the generation of T4 resistant 
bacterial mutants (although we did detect T4-resistant bacteria towards the end of the 
experiment). 

 
 
2) LB hard agar: 

Tryptone     10g 
Yeast Extract     5g 
Sodium Chloride    10g 
Agar      15g 
Distilled water     1000mL 
 
Counting of both bacteria and phage was done on LB agar plates. 
 
 

3) LB soft agar (SIB soft agar): 
Tryptone     10g 
Yeast Extract     5g 
Sodium Chloride    10g 
Agar      10g 
Distilled water     1000mL 
 
SIB soft agar was used as an overlay on the LB agar base (for counting phage). 
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4) PEG6000 Solution (20%) 
PEG6000     20g 
Sodium Chloride    14.6g 
Distilled water     100mL 

 
 The PEG6000 solution was used to concentrate phage (see below). 
 
 

5) Saline Solution (0.86%) 
Sodium Chloride     8.6g 
Distilled water     1000mL 
 
All dilutions (of bacteria and phage) took place in the above saline solution. 
 
 

6) TA agar: 
Tryptone     10g 
Yeast Extract     1g 
Sodium Chloride    5g 
Agar      16g 
Arabinose     10g 
2,3,5 Triphenyl Tetrazolium Chloride (5%) 1mL 
Distilled water     1000mL 

 
TA plates were used for counting bacteria colonies in the bacterial competitions. 

 
Contamination prevention: 

We had to contend with two sources of contamination in this experiment: contamination 
from outside the experiment and contamination from within the experiment.  The antibiotics 
streptomycin and novobiocin were added to prevent outside contamination.  Also, we removed 
sodium citrate from the standard minimal glucose medium as we discovered a contaminant that 
was able to use citrate as a carbon source in a pilot run.  We also were concerned with cross-well 
contamination (inappropriate migration within the microtitre plate).  To prevent such within-
experiment contamination, all microtitre plates were covered with a Breathe-Easy strip during 
shaking.  Several pilot runs with these strips demonstrated their effectiveness in preventing spill-
over between wells. 
 
Experimental metapopulations:     

For every transfer cycle, each metapopulation replicate (two 96 well plates) was incubated 
at 37°C and shaken at 550rpm on a microtitre shaker for about 10.5 hours (the robot transfer itself 
took about an hour and a half).   The volume of growth media in every well was maintained at 
200μL.  As shown in Figure SI.1, in the Restricted and Unrestricted treatments each well was 
diluted tenfold into the corresponding well in plates with fresh growth media.  And this dilution 
was followed immediately by migration.  Therefore, the phage populations experienced their hosts 
in a ‘burst’ every 12 hours rather than in a steady ‘stream’.  The evolution of phage strategies in 
our experiment may be influenced by such periodic growth (e.g., there could be selection for 
phage mixed with bacteria at low multiplicity of infection to time its lysis for optimal later use of 
the uninfected and growing portion of the bacterial population).  Overall, our results might be 
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most applicable to host-pathogen systems in which discrete bursts of death and migration occur 
within the metapopulation (although our results are consistent with some predictions from 
continuous time theory—e.g., Keeling 2000).   

After dilution, a migration event occurred into the new focal well with probability m=0.45.  
In the Restricted treatment, the source of this migration was one of the north, south, east or west 
neighbouring wells, diluted from the spent media plates approximately tenfold into the new focal 
well.  In the Unrestricted treatment, the neighbourhood around a focal well included the entire 
collection of wells, minus the focal.  In the Well-Mixed treatment, all wells were diluted tenfold 
into a common reservoir with fresh growth media, the reservoir was physically mixed, and the 
mixture was dispensed into wells of two empty plates.   
 

Figure SI.1 

MIXED
RESERVOIR

Restricted TreatmentRestricted Treatment

Unrestricted TreatmentUnrestricted Treatment

Well-Mixed Treatment

dilution

migration (m)

dilution

migration (m)

 
A transfer event is shown for the three treatments.  Like the ‘example focal well’ (boxed in bright pink), each well in 
the Restricted treatment is diluted from spent media (yellow) into fresh media (blue).  Then, with probability m=0.45, 
migration occurs from one of the four nearest wells (highlighted in pink) into the focal well.  The Unrestricted 
treatment is identical except that any well in the metapopulation can serve as the migration source.  In the Well-Mixed 
treatment, all wells are diluted into a common reservoir, thoroughly mixed, and redistributed into a fresh set of wells.   
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The multichannel pod of the Biomek FX performed the dilution portion of the 

metapopulation transfer (96 wells diluted at once in each case).  A program (written in C) 
generated text files that gave the source and destination well of every migration event for every 
transfer (generated randomly according to the migration probability).  The function ‘WorkList’ in 
the robot’s software was used to loop through all of these migratory events using the Span-8 pod. 

The robot was also used for the Well-Mixed treatment.  Here the contents from every well 
in the spent media plates were dispensed (in a tenfold dilution) into a reservoir with fresh growth 
media using the multichannel pod.  This reservoir was physically mixed and then the robot 
dispensed 200μL of the mixture into each well of two empty plates (which became the next 
transfer’s metapopulation to be incubated/shaken).   

Bacteria and phage rapidly disappeared from the Well-Mixed metapopulations.  We ended 
the Well-Mixed runs after five consecutive transfers in which no bacteria or phage could be 
detected.  One of the Unrestricted replicates had to be terminated early (transfer 16) because of 
contamination.  The rest of the metapopulations were run for 20 transfers.   
 
Isolating evolved phage:  

We plated out a dilution of each Restricted and Unrestricted replicate from the last transfer 
of the experiment so that individual plaques could be picked.  We used K-12 λ-lysogen cells to 
isolate the phage that were not rII mutants.  This ‘rapid lysis’ rII mutant will not form plaques on 
K-12 λ-lysogen host cells.   A good fraction of the evolved phage from the last transfer was rII 
(but this fraction did not differ significantly with migration treatment, see Figure SII.2).  We 
isolated four plaques at random by placing a 262 point hexagonal grid under the overlay plate and 
using a random number generator to pick four points.  The plaques closest to the random numbers 
chosen were isolated, grown on fresh host to amplify their titre, separated from the host cells, and 
stored for assays in 4°C.  Thus, we isolated a total of 32 plaques (2 treatments, 4 
replicates/treatment, 4 isolates/replicate).  The random picking procedure was implemented to 
prevent bias in the selection of plaques from different treatments. 
 
Estimating bacterial and phage densities: 

At every metapopulation transfer, samples from all wells in the replicate were diluted 
tenfold into a reservoir filled with saline.  Moving very quickly (so as to limit the amount of phage 
infection), the reservoir was physically mixed and diluted in saline to an appropriate concentration 
for plating.  To estimate bacterial densities, a 100μL aliquot of the appropriate dilution of the 
mixture was plated on LB.  After 24 hours of incubation at 37°C, we counted the number of 
colonies to give the bacterial count.  To estimate the phage densities, a 100μL aliquot of the 
appropriate dilution of the mixture was combined with 300μL of fully grown REL606 culture into 
3mL of SIB soft agar and spread over a hard LB agar base.  After 24 hours of incubation at 37°C, 
we counted the number of plaques to give the phage count. 
 For the productivity assay, phage counts were obtained by the same soft agar overlay 
technique both before and after the 12 hour incubation period.  For the competition assay, the 
mixture of evolved T4 phage and rII phage was plated twice in a soft agar overlay, both before and 
after the 12 hour incubation period.  The first overlay used REL606 as the host and the second 
overlay used K-12 λ lysogen as the host.  Since REL606 is sensitive to both evolved T4 and rII, 
but K-12 λ lysogen is sensitive to evolved T4 and resistant to rII, we can estimate both phage 
densities (evolved T4 by counting plaques on the K-12 plate and rII by subtraction). 
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Increasing phage titres:  
Sometimes the phage concentration was too low to achieve the appropriate multiplicity of 

infection for a productivity or competition assay.  To concentrate the phage, we employed the 
following procedure: 

1) Placed 1mL of phage and 0.6mL of PEG6000 solution in a 1.5mL epi tube 
2) Vortex this tube and let it sit on ice for 1½ hours 
3) Spin tubes at 12,000g at 4°C for 10 minutes 
4) Discard supernatant and add 30μL of saline solution and vortex 

Usually, this procedure lifted the concentration of phage about 10-fold. 
 
Derivation of the competitive ability indices: 
 In what follows, we derive the three measures of competitive ability (or relative fitness) 
that we use in the phage competition assays.  In all cases, Ni(t) denotes population size of type i at 
time t. 
 

Per transfer 
 
Consider a population with two types of asexual organisms, A and 
B.  Let the frequency of A be given by p and the frequency of B be 
given by q (where p+q=1). Over a period of time of length τ, the 
following recursions apply: 
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where ω  is the absolute fitness of strain i over τ and ω  is average i

fitness over τ.  Here we assume these ω’s are constants (this is not 
the case for frequency-dependent selection).  One measure of 
fitness (or competitive ability) of strain A relative to strain B is the 
ratio of their absolute fitnesses: 
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Per doubling 
 
Imagine that a population of two types of asexual organisms, A and 
B, have been reproducing over a period of time τ.  If the initial 
total population size is N(0) and the final population size is N(τ), 
then the number of doublings is 
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Now, for a single doubling period, the following recursion applies: 
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where υ  is the absolute fitness of strain i over a doubling period i

υ(all ’s are assumed to be constant—i.e., no frequency 
dependence).  Let z=p/q.  We have the following recursion for z: 
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Thus, iteration of the above recursion D times gives: 
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One measure of fitness (or competitive ability) of strain A relative 
to strain B is the ratio of their absolute fitnesses over the doubling 
period: 
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We know 
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Assuming continuous exponential growth 
 
A commonly used measure of fitness in microbial studies is the 
ratio of Malthusian parameters.  For strains A and B, assume 
exponential growth: 
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One measure of fitness (or competitive ability) of strain A relative 
to strain B is the ratio of their Malthusian parameters: 
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Now, consider both strains growing over a finite period τ.  If we 
know the initial and final counts of each strain, then we have 
w(A,B): 
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Note that all of these measures of fitness are related.  Let fi be the factor by which type i increases 
over the period of time τ (i.e., f =N (τ)/N (0)).  Our three measures can be rewritten: i i i
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If fA and fB are both greater than unity, we know B
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1/Dgiven that y=x  and y=lnx are positive monotonic increasing functions (for x>1).  Thus, for cases 

where both types are expanding, a fitness (of A relative to B) above unity suggests that A out-
competes B, despite the measure used.  When fi<1 (the population size of a type shrinks over the 
period) then the w(A,B) measure can present problems.  Specifically, w(A,B) can be negative (e.g., 
if fA<1 and fB>1) or  , that is, a type that decreases more dramatically 
appears to be the better competitor.  Of course, all these problems occur because lnx<0 for 0<x<1.  
As long as f>1, we avoid problems.  For our phage competitions, we used all three measures, 
ignoring the w measures when unreasonable.  Generally, all three measures yielded similar results. 
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Bacterial competitions: 
 Bacterial strain REL607 is identical to our ancestral bacterial REL606 except that 607 is 
marked with the ability to utilize the sugar arabinose.  From the last transfer of our experimental 
runs we selected three random bacterial isolates from each of the Restricted and Unrestricted 
replicates (24 in all).  These isolates had REL606 as their ancestor and thus shared its arabinose 
marker (inability to use this sugar).  For each competition, we mixed 10μL of REL607 with 10μL 
of the given bacterial isolate in a well with 180μL growth medium.  We measure the density of 
bacterial cells before and after 12 hours of incubation by plating out appropriate dilutions of the 
mixed culture on TA agar plates (ara+ − 607 cells produce pink colonies, while ara  606 cells 
produce red colonies).  We found no significant differences in bacterial fitness over treatments 
(see below).  We used w(A,B) from the previous section to compute bacterial relative fitness.   
 
Derivation of the number of phage generations: 

Let the concentration of phage in a metapopulation at the end of transfer t be Ct (PFU/mL).  
After the 10-fold dilution that initializes a new transfer cycle (in which 20μL in each well is 
transferred to a well with 180μL of fresh medium in the corresponding position on the microtiter 
plate), the concentration of phage in the new metapopulation will be: 
 

tdilt CC 1.0, =  
 
However, we also have migration to consider.  The chance that a well receives a migration of 
20μL from another well is m=0.45.  In such a case, we will be combining 200μL with an expected 
concentration of Ct,dil and 20μL of an expected concentration of Ct.  Note that for every migration 
event we discard 20μL from the destination well (after mixing the 20μL from the source well into 
the destination well) to keep every well at a constant volume of 200μL; however, simply removing 
volume will not change phage concentration.  So, after migration, the concentration of phage is 
expected to be: 
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which, after simplifying, gives approximately 
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We also measure the concentration of phage at the end of the transfer period (Ct+1).  Given that 
volume is maintained constant over the 12 hours of incubation, we have the following (letting Dt+1 
be the number of viral doublings for transfer t+1): 
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Solving for D  and using the equalities above we have the following: t+1
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This equation allows us to compute D  directly from our data (we have Ct+1 t for each transfer t).  
Note that it is possible for the above doubling number to be negative—this can occur when there 
are sampling errors or if, by chance, a larger than expected number of migrations occur from 
media-filled wells into wells with phage and few migrations bring bacteria and phage together (in 
our data, 14 of 156 D values were negative).  Given that we would like to avoid negative 
generation times, we define the number of generations (doublings) as:  
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The total number of generations for the entire run of any given replicate is defined to be 
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except in the case of one replicate from the Unrestricted treatment that was stopped after 16 
transfers due to later contamination.  For that replicate we measured the properties of phage after 
16 transfers, so the appropriate number of generations is 
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We find that the treatments (Restricted and Unrestricted) do not differ in the computed generation 
times (see below).  This result does not change if we include negative D values (that is, replace 
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Statistical Analyses: 
In the paper, we use non-parametric statistical tests.  In the following table, we report both 

these non-parametric statistics as well as the corresponding parametric p values (with the 
exception of intermediate MOI competitive ability and high MOI competitive ability, the non-
parametric and parametric tests agree). 
 

 Mann-Whitney Test T Test 
Bacterial coefficient of variation W=3, p= 0.2 p=0.169252 

Phage coefficient of variation W=0, p=0.02857 p=0.008214 
Bacterial average density W=7, p=0.89 p=0.68225 

Phage average density W=4, p=0.34 p=0.1968202 
Low MOI productivity W=183, p=0.03874 p=0.036946 

Intermediate MOI productivity W=195, p=0.01076 p=0.007161 
High MOI productivity W=187, p=0.026 p=0.010348 

Low MOI competitive ability W=57, p=0.00661 p=0.029564 
Intermediate MOI competitive ability W=41, p=0.00065 p=0.286519 

High MOI competitive ability W=70, p=0.0288 p=0.165011 
Bacterial fitness W=84, p=0.5137 p=0.5356227 

Number of phage generations W=8, p=1 p=0.9703 
 
We pooled all the data at each MOI and calculated Kendall’s correlation: low MOI τ=−0.25, 
T=186, p=0.04545; intermediate MOI τ=−0.1411, T=213, p=0.2655; high MOI τ=−0.4355, T=140, 
p=0.00033. 
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II. The Evidence for Phage Evolution 
 
Section overview: 
 In this section, we describe what led us to explore evolution in the pathogen.  Specifically, 
we describe the discovery of plaque and genetic polymorphisms in our phage population. 
 
Plaque polymorphism: 
 After only a few transfers within the experimental metapopulations, we noticed 
dramatically different plaque morphologies produced by phage we were counting.  In Figure 
SII.1a, a section of a Petri dish with a soft agar overlay is shown.  Each hole is a bacteriophage 
plaque in a lawn of bacteria (the plaque is produced by the descendants of a single phage particle 
that use the available bacterial hosts to go through several rounds of lytic reproduction).  In Figure 
SII.1a, we see plaques that are small and cloudy (the ancestral plaque morphology) and other 
plaques that are large and clear (a novel morphology).  Furthermore, if these plaques are isolated 
and grown with susceptible bacteria and then plated out on another Petri dish, we see that the 
plaque morphology is inherited.  For instance, Figure SII.1b shows plaques produced by phage 
coming from an isolated large clear plaque from the original plate and Figure SII.1c shows plaques 
produced by phage coming from an isolated small cloudy plaque from the original plate.  Both 
plaque types are found throughout the entirety of the experiment.  This was our first suggestion 
that the phage population was evolving. 
 

Figure SII.1 
Large Clear Plaques

Small Cloudy Plaques

a

b

c

 
(a) A small section of a Petri dish with phage plaques of two morphologies (large clear plaques and small cloudy 
plaques).  These phage were plated from the second transfer of one of the Restricted migration replicates.  When 
plaques are isolated, they breed true: (b) phage producing large clear plaques continue to do so and (c) phage 
producing small cloudy plaques continue to do so. 
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Genetic polymorphism: 
 We thought that the large clear plaques might be produced by rII mutants (one of several 
rapid lysis mutants).  We quickly discovered that at least some of these large clear plaques were 
not rII mutants (they produced plaques on E. coli K-12 λ-lysogen).  However, in the process, we 
discovered that there was a fraction of the phage population that was rII.  In Figure SII.2, we track 
the rII fraction of the phage populations over the course of the experiment.  We see that even at the 
beginning of the experiment a fraction of the phage was rII.  Note that we had to grow up phage 
before the experiment started to have a sufficient volume of concentrated phage to initialize the 
metapopulations—this pre-experimental growth was apparently sufficient to produce and select 
for rII mutants. 
 We see that the fraction of rII mutants increases and levels off at about 65% in both of the 
two treatments.  While we do not detect differences in rII evolution between treatments, these 
trajectories do give further evidence that the phage population readily evolves in this experimental 
context.  The reasons for this sustained polymorphism in the phage is currently under 
investigation.  
 A sizeable rII fraction of the evolved phage population speaks to the relevance of our 
competition assay.  We competed evolved non-rII phage against a common rII competitor.  Given 
the large frequency of rII in the population, this competition is bound to be pertinent to evolving 
phage. 

 
 

Figure SII.2 
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The fraction of rII mutant T4 bacteriophage across the entire experiment.  This phage mutant does not produce 
plaques on E. coli K-12 λ-lysogen and this allows us to distinguish this strain from the non-rII evolving phage 
population. 
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III. Configuration Field Approximation 
 
Section overview: 
 In this section we outline the configuration field approach, show some numerical results 
and explain the relationship between the configuration field approximation and stochastic cellular 
automata with different patterns of migration. 

 
Analytic method: 

Imagine an infinite collection of wells, where each well is in one of the states in Table 1.  
At any point in time we can describe the metapopulation by the vector 

 
tttttt EPPPB ,3,2,1,=x , 

 
where the ordered quintet gives the frequencies of wells in each of the five states at time t.  A 
migration event occurs into any focal well with probability m.  Conditional on migration, we 
assume that the probability that the source is in a particular well state is given by that state’s 
frequency (i.e., migration is completely unlimited).  The dynamics of x are given by 
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.  Note that MOne can see the similarity between Table 1 and the stochastic matrix Mt t is not a 

constant matrix, but rather depends on the frequencies of well states.  The configuration field 
approximation (Czárán 1998) to the dynamics of our metapopulation of wells is given simply by 
iteration of the non-linear Markov chain (SIII.1).  
 
Numerical runs: 
 The configuration field approach predicts that phage should go extinct while bacteria 
persist if migration between wells is low (see Figure SIII.1a and SIII.1b), whereas both bacteria 
and phage should coexist at higher migration rates (first at stable levels, then as intermingling 
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cycles—see Figures SIII.1a, SIII.1c and SIII.1d).  In the stochastic cellular automata, the 
Unrestricted neighbourhood should behave similarly to the configuration field approximation 
when the lattice size is large (as we see in Figure SIII.1e).  The Restricted neighbourhood 
stochastic cellular automaton allows exploration of a more structured metapopulation and its 
dynamics can deviate dramatically from the configuration field approximation (see Figure SIII.1f).   
 

Figure SIII.1 
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(a) A bifurcation diagram giving the 
maximum and minimum frequencies of 
wells filled with bacteria (blue) and phage 
(red) as a function of migration between 
wells.  We use a configuration field 
approximation and collect all three phage 
concentrations into a single trajectory.  
The unstable internal equilibria that 
appear after the bifurcation (a little above 
m=0.5) are given by the dotted lines.  For 
low migration rates, the phage cannot 
coexist with the bacteria (an example 
dynamic is given in b).  As the rate of 
inter-well migration is increased, phage 
and bacteria coexist, first as stable 
equilibria (an example dynamic is given 
in c) then as intermingling cycles (an 
example dynamic is given in d).  (e) The 
Unrestricted stochastic cellular automaton 
gives dynamics very similar to that 
predicted by the configuration field 
approximation, whereas (f) the Restricted 
automaton possesses distinct dynamics.   
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IV. Small Lattice Simulations 
 
Section overview: 

In order to (1) choose a migration rate for the experimental runs, (2) establish initial spatial 
arrangement of well-states in the metapopulations, and (3) make predictions about metapopulation 
behaviour, we needed to run simulations (stochastic cellular automata) with lattices that matched 
the size of the metapopulations used in the experiment.  The experimental metapopulations were 
composed of two 96-well plates (each with dimensions 8×12).  Designating one microtitre plate as 
‘Top’ and the other plate as ‘Bottom’, the two plates were arranged so that the bottom row of 12 
wells in the Top plate ‘bordered’ the top row of 12 wells in the Bottom plate (thus giving a 
metapopulation of 192 wells with dimensions 16×12).  In this section, we will refer to this as the 
‘small lattice’ (a 192 point lattice with dimensions 16×12).  In both the simulated and 
experimental metapopulations, we employed ‘wrap around’ boundaries so that every well had four 
nearest neighbours (this was only relevant for the Restricted neighbourhood simulations). 
 
Choosing a migration rate: 
 Given that we have a small lattice, there is the possibility of stochastic loss of bacteria 
and/or phage from our metapopulation.  Because the migration rate strongly influences the nature 
of the community dynamics, the migration rate will influence the likelihood of stochastic loss.  
Consequently, we must select the migration rate with care.  Using the well-state transition matrix 
in Table 1, we run both Unrestricted and Restricted neighbourhood cellular automata with a 
variety of migration probabilities.  We restrict migration to the range required for coexistence 
within the configuration field approximation (Figure SIII.1a), namely, m must be larger than 
approximately 0.2.  The dynamics for m=0.3, m=0.45, and m=0.6 are shown in Figure SIV.1. 
 

Figure SIV.1: Small Lattice Dynamics 
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Even if migration is within the range allowing coexistence in the configuration field 
approximation, phage in the Restricted neighbourhood cellular automaton will not persist if 
migration is too low (e.g., Figure SIV.1a).  This is because of the limit to host access imposed by 
the Restricted migration scheme.  If migration is too high, then there can be extinction in the 
Unrestricted neighborhood (e.g., Figure SIV.1f).  This is because the simulated lattice is small (the 
configuration field approach assumes an infinite metapopulation) and relatively large fluctuations 
occur with a high migration rate, making an extinction event likely.  For intermediate migration 
levels, phage and bacteria persist in both the Restricted and Unrestricted schemes (e.g., Figure 
SIV.1c and Figure SIV.1d).  Because we wanted to avoid both host-limited extinctions and 
stochastic extinctions, we decided to run all of our experiments at an intermediate migration rate 
(we chose m=0.45). 

Notice that the Unrestricted dynamics in Figures SIV.1b, SIV.1d, and SIV.1f do not 
correspond exactly to the dynamic behaviour predicted by the configuration field approach.  
Specifically, we see cyclic behavior for migration values where stable dynamics are predicted 
(e.g., Figure SIV.1d where m=0.45).  This is due to the finite nature of the small lattice.  It is as if 
the community is ‘trying’ to cycle into a stable internal node, but keeps getting knocked off of this 
approach by stochastic demographic events.  The result is continued cycles (and we see these 
cycles in our experimental runs as well).  Fixing the migration probability at m=0.45, we note a 
few differences between the Restricted and Unrestricted simulations.  First, the Restricted 
dynamics are more stable (see below).  Second, the mean phage density is lower in the Restricted 
simulation.  Third, the mean bacterial density is higher in the Restricted simulation.   
 
Initial spatial configuration:  

Figure SIV.2: Initial Well Arrangement  
In simulations on large lattices with random initial 
spatial configurations, there was pronounced transient 
behaviour in the dynamics of the Restricted 
neighbourhood simulation (see Figure 1b).  The 
transient behaviour is due to the fact that the 
metapopulation does not start out spatially clumped; as 
this clumping develops, the dynamics stabilize.  We 
wanted to avoid this transient, so we pursued the 
following strategy:  We performed a single lattice-
based simulation on the small lattice with a Restricted 
neighbourhood (see Box).  After 2000 update steps, we 
recorded the spatial arrangement of wells in the small 
lattice and used this spatial arrangement for our initial 
spatial distribution in all experimental treatments.  
Figure SIV.2 shows the actual initial distribution of 
well-states, with bacteria wells in blue, phage wells in 
shades of red, and empty wells in white (117 B wells, 
18 P1 wells, 6 P2 wells, 11 P3 wells, and 40 E wells).  
Furthermore, these wells were clumped spatially as 
would be expected—see Figure 1c. 
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Making predictions: 
 Using the above initial spatial configuration, we ran 1000 simulations on the small lattice 
for 20 cycles with both a Restricted neighbourhood and an Unrestricted neighbourhood 
(corresponding to the number of transfers in our experiment).  We measured both the average 
bacterial and phage density and the bacterial and phage coefficient of variation in density for each 
run.  In Figure SIV.3 we see that the Restricted neighbourhood simulation is predicted to have 
significantly higher bacterial density, significantly lower phage density, and significantly lower 
bacteria and phage CVs than the Unrestricted neighbourhood simulation.   

The predicted phage densities are quite close to the observed phage densities (do note that 
the average phage density in the Unrestricted treatment was predicted to be higher than what we 
found in the experimental treatment).  The predicted bacterial densities are 3-4 times higher than 
what we observed in the experimental run.  We believe that the lower bacterial densities in the 
experiment occurred because of the way the bacterial counts were executed: the entire 
metapopulation was mixed and quickly diluted before plating out the bacteria.  Such mixing 
means that previously separated bacteria and phage would be in contact.  Even though we tried to 
minimize the time that bacteria and phage were together before dilution, this mixing would 
inevitably lead to some killing of the host by the phage (incidentally, this attachment of phage 
should not affect the phage counts as the phage were plated before lysing would occur, thus post-
mixing infection would not raise the number of plaque forming units).  Such mixing also probably 
partially accounts for why the observed bacterial CVs were greater than those predicted.  If phage 
hits high values when bacteria is at low densities and vice versa, most post-mixing killing of 
bacteria will occur when the bacteria is at low density, which will tend to lift the coefficient of 
variation.     

 
Figure SIV.3 
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(a) The average bacteria and phage densities over 20 time steps in 1000 small lattice simulations with either a 
Restricted or Unrestricted neighbourhood  (b) The coefficient of variation in bacteria and phage density in 1000 small 
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V. Evolutionary Model 

 
Section overview: 

In this section, we extend our model to include both rapacious and prudent phage, where 
rapacious phage are better competitors within mixed wells and prudent phage are more productive 
(and thus more persistent) when alone.  We describe the enlarged state space and how we 
incorporate mutation, competition and persistence differences between strains to arrive at a new 
transition matrix.  This matrix is used to check our intuitions through stochastic cellular automata 
and configuration field approximations.  We should make it clear that our goal here is not to 
design the most accurate model (if this was our goal, it would be best to track the densities of both 
phage types as continuous values, rather than discrete states).  Rather, we would like to gain some 
knowledge of the metapopulation’s behaviour given a basic trade-off between productivity and 
competitive ability in our phage.   

 
Well states: 

Ignoring mixed wells for the moment, we have the following well-states to consider: 
 
1) B (a well filled with bacteria and a sub-critical titre of both phage types) 
2) P1 (a well filled with the highest super-critical titre of prudent phage and no bacteria) 
3) P2 (a well filled with the second highest super-critical titre of prudent phage and no bacteria) 
4) P3 (a well filled with the third highest super-critical titre of prudent phage and no bacteria) 
5) R1 (a well filled with the highest super-critical titre of rapacious phage and no bacteria) 
6) R2 (a well filled with the second highest super-critical titre of rapacious phage and no bacteria) 
7) R3 (a well filled with the third highest super-critical titre of rapacious phage and no bacteria) 
8) E (a well filled with no bacteria and a sub-critical titre of both phage types) 
 

We let ‘P’ now stand for ‘prudent phage’ (as opposed to just ‘phage’), whereas ‘R’ stands 
for ‘rapacious phage’.  Now, if a well has both types of phage types, there are 9 possible 
combinations: {P1R1, P1R2, P1R3, P2R1, P2R2, P2R3, P3R1, P3R2, P3R3}.  However, this 
makes the well-state transition matrix quite large (17×17).  In order to reduce this matrix a bit, we 
make some simplifying assumptions about mutation and competition (which, as is shown below, 
removes 4 states from the total list).  With this collection of well states, there are three processes 
that we must make explicit: (1) mutation, (2) competition, and (3) persistence.  After spelling out 
our notation, we describe each below. 
 
Notation: 

We will use the following notation to represent the transition of a focal well in state X to 
state Y, given that a migration event occurred from a well in state Z: 

 
YX Z⎯→⎯ . 

 
And we use the following notation to represent the transition of a focal well in state X to state Y, 
given no migration event occurred (just a dilution):  
 

. YX ⎯→⎯
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Mutation: 

In our model, mutations in phage only occur when phage are actively replicating on their 
host.  Further, we only allow mutation from prudent phage to rapacious phage.  Specifically, we 
assume: 

 
P1Pi B⎯→⎯ , with probability (1−μ), 
P1R1Pi B⎯→⎯ , with probability μ, 

 
where i∈{1,2,3}.  Thus, in a well with any super-critical titre of prudent phage, if a migration 
event brings the bacterial host into the focal well, we assume that a mutation introducing rapacious 
phage can occur with probability μ (generally taken to be very small).  If such a mutation occurs, 
the final state of the focal well is assumed to be P1R1 (i.e., both phage types are present at high 
titres; thus we assume the rapacious mutant, which is the better competitor, increases in frequency 
within the well after the initial mutation).  Note that we do not consider back mutation from 
rapacious phage to prudent phage (or another way to think of this is that back mutation occurs, but 
the superior competitive ability of rapacious types always prevents the prudent mutants from 
increasing in frequency within a mixed well given the addition of bacteria). 
 
Competition: 
 Competition between phage types occurs only in mixed wells when fresh host cells are 
introduced.  Here, we assume the following: 
 

P1R1PiRj B⎯→⎯ , with probability (1−β), 
R1PiRj B⎯→⎯ , with probability β, 

 
where i,j∈{1,2,3}.  The parameter β measures the probability that the rapacious phage displaces 
the prudent phage in a mixed well given the addition of bacterial cells.  For simplicity, we assume 
that if the rapacious phage does not displace the prudent cohabitant, then both phage types 
increase to their highest titre.  This assumption is a substantial simplification, as P1R1, P2R2, 
P2R3, P3R2, and P3R3 have the same probability of a transition to R1 (or P1R1).  However, this 
assumption allows us to ignore four mixed well combinations (namely, P1R2, P1R3, P2R1, and 
P3R1).  Essentially, the parameter β gives the competitive advantage of the rapacious strain. 
 
Persistence: 
 The rapacious strain is less productive than the prudent strain.  We capture this feature by 
making the rapacious strain more likely to enter the empty well state than the prudent strain.  
Specifically, we assume: 
 

1)R3P(iPiR2 +⎯→⎯ , with probability π, 
1)P(iPiR2 +⎯→⎯ , with probability 1−π, 

 
where i∈{2,3,4} and Pj≡E and PjRk≡Rk when j>3 and k∈{2,3}.  The parameter π measures the 
probability that the rapacious strain will not exit the well upon dilution from the second highest 
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titre state (R2).  Note that the transition  never occurs, whereas  can occur 
with probability 1−π>0.  Essentially, the parameter π gives the persistence of the rapacious strain. 

EP2 ⎯→⎯ ER2 ⎯→⎯

 
Trade-off: 
 We assume that competitive ability and productivity trade-off (as we have empirical 
support for such a claim).  We incorporate this feature by making β a monotonic decreasing 
function of π.  Thus, as the rapacious strain becomes more productive/persistent (π increases), it 
becomes a poorer competitor (β decreases).  Specifically, we assume the power function form: 
 

γπβ )1( −= , 
 
where γ is a parameter that controls the concavity of this trade-off (a concave trade-off requires 
γ<1, a linear trade-off requires γ=1, and a convex trade-off requires γ>1). 
 
Full transition table: 
 Using the information above, we can construct the following transition table, where the 
entries are the well-states of the sources of migration that allow a focal well in the row state to 
transition to the column state:  
 

 Future State 
Current 

state B P1 P2 P3 R1 R2 R3 P1R1 P2R2 P3R2 P2R3 P3R3 E 

B a1 a2   a3   a4      
P1  b1 b2     b3 b4  b5   
P2  c1 c2 c3    c4 c5 c6  c7  
P3  d1 d2 d3  d4 d5 d6 d7   d8 d9
R1     e1 e2   e3 e4    
R2   f1 f2 f3 f4 f5  f6  f7 f8 f9
R3   g1 g2 g3 g4 g5  g6   g7 g8

P1R1     h1   h2 h3     
P2R2   i1 i2 i3   i4 i5 i6 i7 i8  
P3R2   j1 j2 j3 j4 j5 j6 j7  j8 j9 j10
P2R3   k1 k2 k3   k4 k5 k6  k7  
P3R3   l1 l2 l3 l4 l5 l6 l7   l8 l9

E m1  m2 m3  m4 m5  m6   m7 m8
 
Each of the entries in the above table is actually a collection of well-states that produce the 
relevant transition.  For instance, if entry ni≡{∅, W, Z(p)} is found in row X and column Y, this 
means that the following transitions occur: 
 

YX ⎯→⎯ , 
YX W⎯→⎯ , 

YX Z⎯→⎯ , with probability p. 
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Thus, the symbol ∅ refers to a straight dilution without a migration event and Z(p) refers to a 
transition that occurs with probability p when the source well of migration is in state Z.  The 
entries of the table are the following sets: 
 
a1≡{∅, B, E} 
a2≡{P1(1−μ), P2(1−μ), P3(1−μ)} 
a3≡{R1, R2, R3, P1R1(β), P2R2(β), P2R3(β), P3R2(β), P3R3(β)} 
a4≡{P1(μ), P2(μ), P3(μ), P1R1(1−β), P2R2(1−β), P2R3(1−β), P3R2(1−β), P3R3(1−β)} 
b1≡{B(1−μ)} 
b2≡{∅, P1, P2, P3, R3, P2R3, P3R3, E, R2(1−π), P2R2(1−π), P3R2(1−π)} 
b3≡{B(μ)} 
b4≡{R1, P1R1} 
b5≡{R2(π), P2R2(π), P3R2(π)} 
c1≡{B(1−μ)} 
c2≡{P1} 
c3≡{∅, P2, P3, R3, P2R3, P3R3, E, R2(1−π), P2R2(1−π), P3R2(1−π)} 
c4≡{B(μ)} 
c5≡{P1R1} 
c6≡{R1} 
c7≡{R2(π), P2R2(π), P3R2(π)} 
d1≡{B(1−μ)} 
d2≡{P1} 
d3≡{P2, P2R3, P2R2(1−π)} 
d4≡{R1} 
d5≡{R2(π), P3R2(π),} 
d6≡{B(μ)} 
d7≡{P1R1} 
d8≡{P2R2(π)} 
d9≡{∅, P3, R3, P3R3, E, R2(1−π), P3R2(1−π)} 
e1≡{B} 
e2≡{∅, P3, R1, R2, R3, P3R2, P3R3, E} 
e3≡{P1, P1R1} 
e4≡{P2, P2R2, P2R3} 
f1≡{P1(1−π)} 
f2≡{P2(1−π), P2R3(1−π), P2R2((1−π)2)} 
f3≡{B} 
f4≡{R1} 
f5≡{∅(π), P3(π), R3(π), P3R3(π), E(π), R2(1−(1−π)2), P3R2(1−(1−π)2)} 
f6≡{P1R1} 
f7≡{P1(π)} 
f8≡{P2(π), P2R3(π), P2R2(1−(1−π)2)} 
f9≡{∅(1−π), P3(1−π), R3(1−π), P3R3(1−π), E(1−π), R2((1−π)2), P3R2((1−π)2)} 
g1≡{P1} 
g2≡{P2, P2R3, P2R2(1−π)} 
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g3≡{B} 
g4≡{R1} 
g5≡{R2(π), P3R2(π)} 
g6≡{P1R1} 
g7≡{P2R2(π)} 
g8≡{∅, P3, R3, P3R3, E, R2(1−π), P3R2(1−π)} 
h1≡{B(β)} 
h2≡{B(1−β)} 
h3≡{∅, P1, P2, P3, R1, R2, R3, P1R1, P2R2, P3R2, P2R3, P3R3, E} 
i1≡{P1(1−π)} 
i2≡{∅(1−π), P2(1−π), P3(1−π), R3(1−π), P2R3(1−π), P3R3(1−π), E(1−π), R2((1−π)2),  

P2R2((1−π)2), P3R2((1−π)2)} 
i3≡{B(β)} 
i4≡{B(1−β)} 
i5≡{P1R1} 
i6≡{R1} 
i7≡{P1(π)} 
i8≡{∅(π), P2(π), P3(π), R3(π), P2R3(π), P3R3(π), E(π), R2(1−(1−π)2),   
       P2R2(1−(1−π)2), P3R2(1−(1−π)2)} 
j1≡{P1(1−π)} 
j2≡{P2(1−π), P2R3(1−π), P2R2((1−π)2)} 
j3≡{B(β)} 
j4≡{R1} 
j5≡{∅(π), P3(π), R3(π), P3R3(π), E(π), R2(1−(1−π)2), P3R2(1−(1−π)2)} 
j6≡{B(1−β)} 
j7≡{P1R1} 
j8≡{P1(π)} 
j9≡{P2(π), P2R3(π), P2R2(1−(1−π)2)} 
j10≡{∅(1−π), P3(1−π), R3(1−π), P3R3(1−π), E(1−π), R2((1−π)2), P3R2((1−π)2)} 
k1≡{P1} 
k2≡{∅, P2, P3, R3, P2R3, P3R3, E, R2(1−π), P2R2(1−π), P3R2(1−π)} 
k3≡{B(β)} 
k4≡{B(1−β)} 
k5≡{P1R1} 
k6≡{R1} 
k7≡{R2(π), P2R2(π), P3R2(π)} 
l1≡{P1} 
l2≡{P2, P2R3, P2R2(1−π)} 
l3≡{B(β)} 
l4≡{R1} 
l5≡{R2(π), P3R2(π)} 
l6≡{B(1−β)} 
l7≡{P1R1} 
l8≡{P2R2(π)} 
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l9≡{∅, P3, R3, P3R3, E, R2(1−π), P3R2(1−π)} 
m1≡{B} 
m2≡{P1} 
m3≡{P2, P2R3, P2R2(1−π)} 
m4≡{R1} 
m5≡{R2(π), P3R2(π)} 
m6≡{P1R1} 
m7≡{P2R2(π)} 
m8≡{∅, P3, R3, P3R3, E, R2(1−π), P3R2(1−π)} 
 
 
Configuration field approach: 

In order to use the configuration field approach, we consider the following vector: 
 

tttttttttttttt ERPRPRPRPRPRRRPPPB ,33,32,23,22,11,3,2,1,3,2,1,=x , 
 
which gives the frequencies of each of the 13 well states at time t.  Given an infinite number of 
wells, a global migration neighbourhood and a migration probability of m, the dynamics of x are 
given by: 
 

ttt Mxx =+1 , 
 
with 
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where (below we let λ=1−π) 
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)()1(1 tt BEmma ++−=  

)321)(1(2 ttt PPPma ++−= μ  
))3323322211(321(3 tttttttt RPRPRPRPRPRRRma +++++++= β  

))3323322211)(1()321((4 tttttttt RPRPRPRPRPPPPma ++++−+++= βμ  

tBmb )1(1 μ−=  
))23222(33323321()1(2 tttttttttt RPRPRERPRPRPPPmmb ++++++++++−= λ  

tBmb μ=3  
 )111(4 tt RPRmb +=

 )23222)(1(5 ttt RPRPRmb ++−= λ
 tBmc )1(1 μ−=

 tmPc 12 =
 ))23222(3332332()1(3 ttttttttt RPRPRERPRPRPPmmc +++++++++−= λ

 tBmc μ=4

 tRmPc 115 =
 tmRc 16 =

 )23222)(1(7 ttt RPRPRmc ++−= λ
 tBmd )1(1 μ−=

 tmPd 12 =
 )22322(3 ttt RPRPPmd λ++=

 tmRd 14 =
 )232)(1(5 tt RPRmd +−= λ

 tBmd μ=6

 tRmPd 117 =
 tRPmd 22)1(8 λ−=

 ))232(3333()1(9 tttttt RPRERPRPmmd ++++++−= λ
 tmBe =1

 )33233213()1(2 ttttttt ERPRPRRRPmme +++++++−=
 )111(3 tt RPPme +=

 )32222(4 ttt RPRPPme ++=
 tPmf 11 λ=

)22)322(( 2
2 ttt RPRPPmf λλ ++=  

 tmBf =3

 tmRf 14 =

))232)(1()3333)(1(()1)(1( 2
5 tttttt RPRERPRPmmf +−++++−+−−= λλλ  

 tRmPf 116 =
 tPmf 1)1(7 λ−=
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)22)1()322)(1(( 2
8 ttt RPRPPmf λλ −++−=  

))232()3333(()1( 2
9 tttttt RPRERPRPmmf ++++++−= λλλ  

tmPg 11 =  
)22322(2 ttt RPRPPmg λ++=  

tmBg =3  

tmRg 14 =  
))232)(1((5 tt RPRmg +−= λ  

tRmPg 116 =  

tRPmg 22)1(7 λ−=  
))232(3333()1(8 tttttt RPRERPRPmmg ++++++−= λ  

tBmh β=1  

tBmh )1(2 β−=  
)3332232211321321()1(3 tttttttttttt ERPRPRPRPRPRRRPPPmmh ++++++++++++−=

tPmi 11 λ=  
))23222()3332332(()1( 2

2 ttttttttt RPRPRERPRPRPPmmi +++++++++−= λλλ  

tBmi β=3  

tBmi )1(4 β−=  

tRmPi 115 =  

tmRi 16 =  

tPmi 1)1(7 λ−=  
))23222)(1()3332332)(1(()1)(1( 2

8 ttttttttt RPRPRERPRPRPPmmi ++−++++++−+−−= λλλ

tPmj 11 λ=  
)22)322(( 2

2 ttt RPRPPmj λλ ++=  

tBmj β=3  

tmRj 14 =  
))232)(1()3333)(1(()1)(1( 2

5 tttttt RPRERPRPmmj +−++++−+−−= λλλ  

tBmj )1(6 β−=  

tRmPj 117 =  

tPmj 1)1(8 λ−=  
)22)1()322)(1(( 2

9 ttt RPRPPmj λλ −++−=  
))232()3333(()1( 2

10 tttttt RPRERPRPmmj ++++++−= λλλ  

tmPk 11 =  
))23222(3332332()1(2 ttttttttt RPRPRERPRPRPPmmk +++++++++−= λ  

tBmk β=3  

tBmk )1(4 β−=  

tRmPk 115 =  
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 tmRk 16 =
 )23222)(1(7 ttt RPRPRmk ++−= λ

 tmPl 11 =
 )22322(2 ttt RPRPPml λ++=

 tBml β=3

 tmRl 14 =
 )232)(1(5 tt RPRml +−= λ

 tBml )1(6 β−=
 tRmPl 117 =

 tRPml 22)1(8 λ−=
 ))232(3333()1(9 tttttt RPRERPRPmml ++++++−= λ

 tmBm =1

 tmPm 12 =
 )22322(3 ttt RPRPPmm λ++=

 tmRm 14 =
 )232)(1(5 tt RPRmm +−= λ

 tRmPm 116 =
 tRPmm 22)1(7 λ−=

 ))232(3333()1(8 tttttt RPRERPRPmmm ++++++−= λ
 
Again, M  is not a constant matrix, but depends on x .  Let the (x,y) entry of Mt t t be given 
by sxy.  We have 
 

1
13

1

=∑
=y

xys , 

 
for all x∈{1,2,3,…13}.  That is, Mt is a stochastic matrix—all matrix entries in the same 
row have the same head letter, thus summing over a letter should always give unity (e.g., 
a + a + a + a1 2 3 4=1).  The configuration field approximation is achieved by numerically 
iterating the non-linear Markov chain.   
 
In Figure SV.1, we see the configuration field approximation that corresponds to Figure 
3a (m=0.45, π=0.87, γ=0.1, and μ=0.001).  In this case, the rapacious phage drives the 
prudent phage to extinction. 
 
Using the full transition table above, we can also run cellular automata with both 
Restricted and Unrestricted neighbourhoods (e.g., Figure 3).  For large lattice sizes, the 
dynamics of the Unrestricted neighbourhood cellular automaton corresponds to the 
configuration field approximation, whereas the dynamics of Restricted neighbourhood 
cellular automaton often deviates.   
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Figure SV.1: Evolutionary Configuration Field Approximation 
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The dynamics predicted by the configuration field approximation incorporating evolution.  Like the 
stochastic cellular automata with unrestricted migration, the rapacious phage displace the prudent phage. 
 
In Figure SV.2, we compare the configuration field approximation to cellular automata 
over the same parameter search as that illustrated in Figure 3c.  There is a close 
correspondence between the Unrestricted simulation and the configuration field 
approximation, whereas rapacious phage do poorly under nearly all parameters with 
restricted migration.  
 

                                Figure SV.2 
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The frequency of rapacious phage after 3000 
cycles is shown on a greyscale for a number of 
different parameter combinations (for all plots, 
m=0.45 and γ=0.1).  (a) A parameter search 
using the configuration field approximation. (b) 
A parameter search using stochastic cellular 
automata with unrestricted migration. (c) A 
parameter search using stochastic cellular 
automata with restricted migration.  (For each 
parameter search using cellular automata, each 
square is the average final rapacious frequency 
over five simulation runs). 

  




