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Natural selection enriches genotypes that are well-adapted to
their environment. Over successive generations, these changes
to the frequencies of types accumulate information about the se-
lective conditions. Thus, we can think of selection as an algo-
rithm by which populations acquire information about their envi-
ronment. Kimura (1961) pointed out that every bit of information
that the population gains this way comes with a minimum cost in
terms of unrealized fitness (substitution load). Due to the gradual
nature of selection and ongoing mismatch of types with the envi-
ronment, a population that is still gaining information about the
environment has lower mean fitness than a counter-factual pop-
ulation that already has this information. This has been an influ-
ential insight, but here we find that experimental evolution of Es-
cherichia coli with mutations in a RNA polymerase gene (rpoB) vi-
olates Kimura’s basic theory. To overcome the restrictive assump-
tions of Kimura’s substitution load and develop a more robust
measure for the cost of selection, we turn to ideas from computa-
tional learning theory. We reframe the ‘learning problem’ faced
by an evolving population as a population versus environment
(PvE) game, which can be applied to settings beyond Kimura’s
theory – such as stochastic environments, frequency-dependent
selection, and arbitrary environmental change. We show that the
learning theoretic concept of ‘regret’ measures relative lineage
fitness and rigorously captures the efficiency of selection as a
learning process. This lets us establish general bounds on the
cost of information acquisition by natural selection. We empiri-
cally validate these bounds in our experimental system, showing
that computational learning theory can account for the observa-
tions that violate Kimura’s theory. Finally, we note that natural se-
lection is a highly effective learning process in that selection is an
asymptotically optimal algorithm for the problem faced by evolv-
ing populations, and no other algorithm can consistently outper-
form selection in general. Our results highlight the centrality of
information to natural selection and the value of computational
learning theory as a perspective on evolutionary biology.
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Living organisms are astonishingly complex and intricately
adapted to their environments. To implement adaptations to particu-
lar environments, organisms require extensive information about the
environmental conditions and how to function in response. Much of
this information is carried by the genome. The core insight of the
modern synthesis is that this adaptive genetic information is acquired
by the process of natural selection acting on genetic variation.

Natural selection shifts the frequencies of types in a population
such that types that are well-suited for the environment become more
common, and less fit types are eliminated. Over successive genera-
tions, the effects of selection leave an imprint of the selective condi-
tions on the population’s composition, and the relative frequencies of
types provide an increasing amount of information about the popu-
lation’s environmental history. In this way, we might view selection
as a learning process through which the population acquires adap-
tive information. Population genetics offers a large body of theory

describing how genetic variance changes in the process of evolution,
but we lack correspondingly rich theory for how adaptive information
changes as a consequence of these same dynamics.

Motoo Kimura was among the first to consider natural selection as
an information acquisition process in a formal sense. Kimura (1961)
proposed a simple relationship between information gain by natural
selection and the long-term growth of a population: As selection
updates the composition of the population to better match the en-
vironment, information about the environment is acquired and the
mean fitness of the population increases. But selection is gradual and
mean fitness remains suboptimal until a fully optimal composition is
reached. Kimura noted that the amount of information gained in a
simple allele substitution is proportional to the loss of potential fit-
ness incurred by the incremental nature of selection. This result led
Kimura to suppose that there is a cost of selection that limits how
much information can be gained by this process.

Kimura’s result points to a fundamental relationship between two
essential quantities in evolution—fitness and information— but this
connection has seen limited development since (Frank 2009, 2012,
Donaldson-Matasci et al. 2010, Rivoire and Leibler 2011, Adami
2012, Hledík et al. 2021). Here we test, extend, and reinterpret this
theory to illuminate a rigorous and meaningful relationship between
information and fitness. First, we formalize selection as an informa-
tion acquisition process and review Kimura’s result relating informa-
tion gain and substitution load. We then test this basic result exper-
imentally, which prompts us to introduce a more general definition
of mismatch load for heterogeneous and time-varying environments.
We thereby validate a lower bound on the cost of selection: the mini-
mum load that a population must incur in order to gain a given quan-
tity of information. We then adopt the frame of natural selection as a
learning process in order to clarify and formalize the cost of selection
in learning theoretic terms. This allows us to characterize the rela-
tive efficiency of selection as an information acquisition process by
establishing general upper bounds on the cost of selection that hold
for any environment, including frequency-dependent and adversarial
settings. Our results describe a tight relationship between informa-
tion gain and lineage fitness.

Natural selection as an information acquisition process
Learning is the process of iteratively updating a hypothesis in light
of new evidence. Consider a population that consists of a number of
asexual replicators of varying types (e.g., genotypes). Each alternative
type represents a strategy for how to function and survive, and the
distribution of type frequencies pt can be seen as the population’s
hypothesis about which type is most suited for the environment at
time t. Natural selection acts as a learning process that updates this
hypothesis. The fitness Wi of the ith type provides evidence about

RSM, BK, CTB designed research. RSM performed theoretical analysis. RSM, OK performed
experiments and associated data analysis. BK supported and supervised experimental work.
RSM developed simulations. RSM, AK wrote the paper. RSM generated visualizations. RSM
wrote the appendices. OK, AK, BK, CTB provided feedback on drafts.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: ryansmcgee@gmail.com

McGee et al. bioRχiv | July, 2022 | 1–11

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


its suitability for the current state of the environment, and selection
changes the frequency pi of each type accordingly following the well-
known replicator dynamics (Appendix A.1.1):

pt+1
i = pt

iWi∑
k

pt
kWk

. [1]

The process by which selection updates a population’s type dis-
tribution is formally analogous to Bayesian learning (Harper 2009b,
Shalizi 2009, Campbell 2016, Watson and Szathmáry 2016, Czégel
et al. 2020) (Appendix C.1). Selection increases the frequency of
types with high relative fitness in the same way that Bayes’ rule in-
creases the weight of alternatives that give high relative likelihood to
the observed evidence. The population’s hypothesis regarding the fit
of types to the environment is refined over time as new information
about which types have obtained high fitness is encoded into the fre-
quency distribution.

We can measure how much a population learns by measuring
how much its hypothesis changes.The Kullback-Leibler divergence
between the population’s initial type distribution p0 and its updated
distribution pT quantifies the amount of information gain IT that
selection provides over a learning period of duration T (Figure 1a):

IT = D(pT
∣∣∣∣p0) =

∑
i

pT
i log pT

i

p0
i

. [2]

While other processes such as drift, mutation, and migration may
change type frequencies, we focus here on changes due to selection.
Selection is unique among these processes in that the type frequency
changes it enacts are, by definition, explicitly dependent on the envi-
ronment. Selection establishes an adaptive matching between types
and environments such that observing a particular type in a given pop-
ulation reduces uncertainty about the kind of environment it occupies
(Shea 2007, Bergstrom and Rosvall 2011). In this sense, frequency
changes attributable to selection directly contribute to an increase
in adaptive information about the environment, whereas frequency
changes attributable to drift or other processes do not (McGee and
Bergstrom 2022) (Appendix B.2.3).

As a population evolves with respect to a particular environ-
ment, selection moves the population toward an evolutionarily sta-
ble state (ESS) p that maximizes expected fitness for the current con-
ditions (Maynard Smith 1982, Eshel and Feldman 1984, Hammer-
stein 1996). The divergence D(p||pt) of the ESS from the popula-
tion’s current type distribution defines the potential information of
the system: the information gain that is still available from the pop-
ulation’s current state (Figure 1b). As selection proceeds, informa-
tion is gained (Figure 1d) and the potential information continually
decreases (Appendix B.2.2). In fact, the route that selection takes
follows an information gradient, where each update shifts the type
distribution in the direction that maximizes information gain relative
to the population’s current state (Harper 2009a, Harper and Fryer
2015). When the population reaches an equilibrium composition, it
has gained all of the information that can be gained about the cur-
rent environment. Therefore natural selection can be understood at
its most fundamental as an information acquisition process, both in
its outcomes and in its underlying dynamics.

Fitness loss associated with information gain
Populations do not gain information for free. Just as we learn from
our mistakes, populations learn from the shortcomings of poorly
adapted types. Differential fitnesses provide the evidence that drives
the population’s learning, but selection does not immediately pivot to
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Fig. 1. Selection accumulates information gain and substitution load. Nat-
ural selection changes the frequencies of types in a population according to their
relative fitnesses. (a) Change in the population’s type frequency distribution over
time is depicted by a Muller plot, where the height of each colored band repre-
sents the frequency of the corresponding type at a given time (type colors are
indicated in (b)). The population’s information gain IT at time T is measured by
the KL divergence of the population’s state pT from its initial state p0. (b) The
black trajectory through the simplex tracks the composition of the population over
time as selection moves the population from its initial type frequency distribution
p0 toward fixation of the optimal Type 1 (green vertex), which is an evolutionar-
ily stable state (ESS) p. The teal line segment connecting the population’s initial
state with its trajectory through the simplex provides graphical intuition about how
information gain changes over time (note that KL divergence is not a true distance
metric). The gray dotted line represents the initial potential information, which is
defined as the KL divergence of the ESS from the population’s initial state. (c) As
selection proceeds in this fixed environment, the mean fitness of the population
increases (black line) as suboptimal types decrease in frequency. As the popu-
lation approaches fixation of Type 1, the mean fitness converges on the optimal
fitness of this type (green line). The substitution load at time T measures the cu-
mulative depression in population mean fitness below the optimal fitness level up
to that time, which corresponds to the area of the orange shaded region. (d) The
accumulation of information gain (teal line) and substitution load (orange line) are
plotted over the course of selection. Substitution load and information gain con-
verge on the same value as the population approaches fixation (Proposition 1),
and substitution load always exceeds information gain (Proposition 2).

the highly fit types. Instead, it incorporates this information by grad-
ually adjusting allele frequencies over time. A population that is still
gaining information about the environment has lower mean fitness
than a population that already has this information.

Haldane (1937, 1957) and Kimura (1960) introduced the concept
of substitution load to describe the relative cost of using selection to fix
beneficial alleles in a population. Haldane and Kimura considered the
simple case of an allele substitution in an infinite haploid population
with multiple segregating types. The optimal type with the highest
fitness increases in frequency toward fixation, but until the substitu-
tion is complete the presence of less-fit types holds the mean fitness
of the population below the maximum. The substitution load LT

sub
measures the cumulative difference between the maximum growth
rate of an ideal monomorphic population of the optimal type and the
actual population’s average growth rate over T generations of selec-
tion (Figure 1c, Appendix D.1.1):

LT
sub =

T∑
t=1

∑
i

pt
i (log W∗ − log Wi) [3]

=
T∑

t=1

(
log W∗ − ⟨log W ⟩t

)
, [4]
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where W∗ and Wi denote the fitnesses of the optimal and ith types,
respectively. The log fitness log Wi corresponds to the growth rate of
the ith type, and ⟨log W ⟩t =

∑
i
pt

i log Wi denotes the population’s
average growth rate (Appendix A.1.1). Substitution load gives the
total fold loss of potential growth that a population suffers by evolv-
ing its composition incrementally relative to a population that grows
optimally all along.

Kimura (1961) noticed an interesting connection: the total infor-
mation gain accumulated in a complete allele substitution is equal to
the total substitution load incurred during that process. Irrespective
of the strength of selection and the speed of the substitution process,
the information gain and substitution load ultimately converge on the
same value, which depends only on the initial frequency of the opti-
mal type p0

∗ (Figure 1d, Appendix D.1.1).

Proposition 1. (Kimura 1961)

lim
T →∞

IT = lim
T →∞

LT
sub = − log p0

∗ . [5]

In addition, we prove here that substitution load always exceeds
information gain throughout the course of selection, with equality in
the limit of fixation (Figure 1d)

Proposition 2. (Appendix D.4.3)

IT ≤ LT
sub ∀ T . [6]

This implies that in order to gain a given amount of information, there
is a minimum load that must be paid to achieve the type substitutions
necessary to encode that information. In other words, the process of
selection acquiring one bit of information, which represents a two-
fold reduction in uncertainty about the environment, requires at least
a two-fold depression in mean fitness along the way. A population
can either grow optimally (i.e., have no less-fit types) or acquire in-
formation, but not both.

Measuring load in realistic environments
Kimura’s theory predicts a relationship between two primary quan-
tities in evolutionary biology—fitness and information. If this rela-
tionship is fundamental to natural selection, then we should expect
it to be readily observed in empirical populations, but these predic-
tions have yet to be validated directly. While Kimura’s theory is clear
and self-consistent, it was developed under a number of simplifying
assumptions. It is important to confront such theory with the real
world to test its applicability to natural populations and to reveal un-
expected ways in which the theory may be revised to accommodate
the complexities of real systems.

We set out to test the predictions of Kimura’s theory using an ex-
perimental evolution system that closely adheres to the assumptions
made in the theory. We used four strains of Escherichia coli with dis-
tinct mutations in the RNA polymerase rpoB gene that confer dif-
fering growth rates in a standard growth medium. Each strain was
transformed with a plasmid carrying a constitutive fluorescent protein
marker for strain identification and cell enumeration. We ran selec-
tion experiments with various combinations of strains starting from
different initial frequencies (Materials & Methods). Each popula-
tion was maintained in exponential growth phase for 36 hours (Ap-
pendix E.2.1), which was sufficient time for all populations to ap-
proach fixation. Information gain was calculated at each time point as
the KL-divergence between the population’s current and initial allele
frequency distributions. Load was quantified as the cumulative dif-
ference between the population’s average growth rate and the growth
rate of the optimal allele in each interval.

Fig. 2. Information gain and load measured in a selection experiment. Re-
sults from a single representative selection experiment are presented in detail.
(a) This selection competition involved a GFP-labeled WT strain and a less-fit
RFP-labeled M1 strain with initial frequencies of approximately 25% (p0

∗) and
75%, respectively. (b) Changes in the frequencies of these types over time are
depicted by a Muller plot, where the height of the green and pink bands give the
frequency of the WT and M1 strains, respectively. The WT strain has the opti-
mal growth rate and selection moves the population toward fixation of this type.
(c) The mean growth rate of the population (doublings per hour) is plotted over
the course of the experiment (black line). Each point represents the estimated av-
erage population growth rate over the preceding 4 hour interval. The growth rate
of the optimal WT strain was also measured at 4 hour intervals, and the average
of these measurements is used as a fixed estimate of this type’s characteristic
growth rate (green dashed line). (d) Information gain (teal line) and substitution
load (dashed orange line) measurements are plotted over time. Here substitution
load is computed as the difference between the population growth rate (black line
in (c)) and the fixed characteristic growth rate of the optimal type (dashed green
line in (c)), as per the classical definition. Under this definition, the observed
load does not conform to the predictions of Proposition 1 or Proposition 2. (e) In
addition to the the estimated mean population growth rates over time (black line,
same as in (c)), we also plot the estimated growth rates of the optimal WT strain
for each interval (green line). While growth rates fluctuate, the growth rate of the
optimal allele exceeds the mean population growth rate in every interval, and the
population growth rate converges on the optimal rate as it nears fixation of the
WT strain. (f) Information gain (teal line) and mismatch load (orange line) mea-
surements are plotted over time. Using the extended definition of mismatch load,
which accommodates time-varying fitnesses, the observed load and information
adhere to the the predictions of Proposition 1 and Proposition 2.

Results from one of these selection experiments are highlighted in
Figure 2. As expected, the optimal allele increases in frequency and
approaches fixation (Figure 2b). However, the observed relationship
between information and load deviates from the theoretical predic-
tions: the substitution load does not always exceed information gain
or converge on information gain at fixation (Figure 2d). Why not?
While Kimura’s definition of substitution load assumes a static en-
vironment with constant fitnesses, growth rates fluctuated stochasti-
cally in our experiments despite maintaining cultures in exponential
growth phase (Figure 2c). Given that this assumption cannot be sat-
isfied even in a highly controlled laboratory population, applying this
fixed definition of substitution load to natural systems is problematic.

These observations led us to extend this concept of load to realistic
contexts where conditions and fitnesses change over time. Suppose
there is a set of distinct environmental conditions, which may be char-
acterized by abiotic properties, type frequencies, population densities,
or other factors (Appendix A.2). Let the probability that a given or-
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WT v M3 Fig. 3. The relationship between load and in-
formation predicted by theory is reliably ob-
served in selection experiments. Results from
9 selection competition experiments that involved
different combinations of types (column headings)
and that initialized batch culture populations with
different frequencies of the optimal type p0

∗ (row
headings) are shown. The WT strain had the
optimal growth rate and approached fixation in
all competitions. Theory predicts that information
gain and load converge on the same value, equal
to the negative logarithm of the initial frequency
of the optimal type (− log p0

∗, Proposition 1). The
convergence value depends on the initial frequen-
cies of each population, but this convergence is
observed in all contexts. Notably, neither the to-
tal load nor total information gain depend on the
strength of selection, which varies from one group
of types to another. Mismatch load is expected to
exceed information gain at all times in this setting
(Proposition 2), and this relationship is observed
in all competitions.

ganism experiences the jth condition be denoted by xj , and let the
fitness of an organism of the ith type in the jth condition be given by
Wij . Then scenarios with fluctuating conditions can be represented
with a probability distribution xt that may change arbitrarily over
time. For this more general context, we define the mismatch load
(Appendix D.1.2):

LT =
T∑

t=0

∑
i,j

pt
ix

t
j (log W∗j − log Wij) [7]

=
T∑

t=0

(
⟨log W∗⟩t − ⟨log W ⟩t

)
, [8]

where W∗j is the fitness of whichever type is optimal in condition
j (i.e., W∗j = maxi Wij). Mismatch load measures the cumulative
loss of potential fitness due to the mismatch of types and environmen-
tal conditions. Kimura’s substitution load (Equation 4) is a special
case of our mismatch load for an allele substitution in an environment
with only a single, unchanging condition.

Although we did our best to create a static and identical envi-
ronment in our experiments, the environmental conditions (e.g., in-
oculum size, nutrient concentration, temperature) nevertheless inad-
vertently change slightly from one interval to the next. This causes
growth rates to fluctuate, but all cells in each well-mixed batch cul-
ture experience the same conditions, and the identity of the optimal
type does not change. This still constitutes an allele substitution sce-
nario, albeit a more noisy one. The theoretical relationship between
information gain and load (Proposition 1, Proposition 2) is predicted
to hold in such a case, but for our more general mismatch load instead
of Kimura’s more particular substitution load (Appendix D.4).

Using the more appropriate definition of mismatch load, our em-
pirical results conform remarkably well to the predictions of theory:
information gain is always exceeded by load, and these quantities ap-
proach equality as the populations approach fixation (Figure 2f). This
relationship is observed in all of our selection competitions regardless
of the selection strength or the initial frequency of the optimal allele
(Figure 3, Supplemental Figure E6).

Theory predicts that information gain is a lower bound on the
load incurred by selection. Our experimental populations suffer the
requisite minimum load necessary to encode that information, but

no more. These experimental results suggest that this relationship
between information gain and load, suitably generalized, is not simply
an artifact of abstractions in population genetics theory, but rather a
general property of selection acting on real populations.

The cost of selection as a learning process
While, substitution load was originally conceived of and studied as a
“cost of selection” (Haldane 1937, 1957, Crow 1958, 1970, Kimura
1961, 1968), many have since argued that it is counterintuitive to
view selection acting on beneficial variation as costly, since popula-
tions that evolve are surely better off than those that do not (VanValen
1963, Brues 1964, Maynard Smith 1968, Sved 1968, O’Donald 1969,
Moran 1970). However, the “cost of selection” that Haldane (1957)
and Kimura (1961) refer to is not the disadvantage of a population
that undergoes selection relative to one that does not evolve, but rather
the disadvantage of a population needing to evolve relative to one that
is already optimal. As Felsenstein (1971) points out, “it is appropriate
to speak of a cost of selection, since the cost comes from the fact that
natural selection is less efficient than divine intervention.”

That said, it is true that the generalization of substitution load—
mismatch load—does not quantify precisely this notion of cost in all
cases. Fundamentally, mismatch load measures the loss of potential
fitness due to ongoing mismatch between types and environmental
conditions. When there is only one environmental state (as in Hal-
dane and Kimura’s substitution models) or when the same type is op-
timal in all conditions (as in our experiments), an optimal population
is monomorphic for the most fit type and experiences no mismatch or
load. In these cases, all mismatch is transient and attributable to the
process of selection being incomplete, and mismatch load quantifies
the cost of selection’s gradual nature as desired.

However, when the environment includes multiple conditions
that favor different types, a type distribution that maximizes expected
fitness over all conditions may still experience some load due to mis-
match resulting from stochastic associations of types and conditions
(i.e., mismatch load cannot be reduced to zero). In this case, not all of
the cumulative load is attributable to the gradual nature of selection,
and mismatch load does not accurately reflect the cost of the process
itself. Instead, it would be more appropriate to quantify the cost of
selection as the amount of excess load that accrues during evolution
relative to the baseline load that is expected of an adapted population.
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Fig. 4. The Population versus Environment game. The learning problem faced by an evolving population can be modeled as a repeated game against the
environment, which is illustrated here using the metaphor of a tabletop game. (a) The game is defined by the set of types available to the population player (tokens,
rows), the set of conditions available to the environment player (cards, columns), and a game matrix G that specifies the payoff that each type receives when played
against each environmental condition. Here the payoffs received by individual tokens are defined as the log fitness (growth rate) log Wij of each type i in each
condition j. (b) In each round t, the environment player puts out an array of environmental conditions (cards) with condition frequencies given by the environmental
strategy xt. The population player selects a collection of types to play against the environment according to their type frequency strategy pt. Each individual type
is assigned to an independent environmental condition (one token placed on each condition card), but the pairing of types and conditions is random and out of both
players’ control (condition cards are shuffled and remain face down until the type tokens are arbitrarily placed). (c) The environmental conditions that individuals have
been paired with are then revealed. An individual with type i that encountered condition j receives a loss ℓ(i, j) = maxi Gij − Gij = maxi log Wij − log Wij (a
subset of individual loss terms are denoted in orange). The population player’s score in round t is the expected (mean) loss ℓ(pt, xt) of all of the individuals (tokens)
they played across the distribution of conditions (cards) played by the environment. The population player’s goal is to update their strategy pt so as to minimize their
cumulative expected loss over many rounds of the game.

We do this below by extending and reinterpreting the cost of selection
through the lens of learning theory.

A learning theoretic model of evolution
Analyzing the relative cost of learning processes is the purview of com-
putational learning theory, which has seen recent adoption for the
study of evolution (Valiant 2009, Chastain et al. 2014, Kaznatcheev
2020). Here we cast evolution by natural selection in a learning the-
oretic framework in order to clarify the meaning of mismatch load
and develop a rigorous measure for the cost of selection as a learning
process.

The general learning problem faced by an evolving population can
be modeled as repeated play of a game between two players: the pop-
ulation and the environment (Figure 4, Appendix C.2). A play of this
population versus environment (PvE) game in round t (i.e., gener-
ation t) consists of the population ‘choosing’ a distribution of types
and the environment ‘choosing’ a distribution of environmental con-
ditions to be experienced by the population. The distribution of types
pt and the distribution of conditions xt represent the strategies of the
population player and the environment player, respectively, in round t
of the game. A particular learning problem instance can be defined by
specifying an n-by-m game matrix G that gives the log fitness (i.e.,
growth rate) for each of the n types in each of the m environmen-
tal conditions (i.e., Gij = log Wij) and by specifying the process by
which the environment updates its strategy xt over time (Figure 4a).
A wide range of biological contexts can be modeled with appropriate
choices of G and xt.

Each individual in the population experiences a micro-
environment characterized by an independent condition drawn
from the environment’s distribution of conditions xt (Figure 4b).
The association of particular conditions to specific individuals is
assumed to be random and out of both players’ control. The loss of
potential long-term fitness ℓ(i, j) that an individual of type i incurs

in condition j is defined as the difference in log fitness (i.e., growth
rate) between the optimal type for the jth condition and the ith type
in the same condition

ℓ(i, j) = log W∗j − log Wij . [9]

After each round t, the population player ‘observes’ the expected loss
of each ith type across the distribution of conditions xt (Figure 4c)

ℓ(i, xt) =
∑

j

xt
j (log W∗j − log Wij) , [10]

which provides evidence about the relative suitability of each type for
the current environment. The population player can then use this
type loss information to update the type frequencies that define its
strategy pt according to some learning process.

The population incurs the expected fitness loss of its strategy in
each round t (Figure 4c)

ℓ(pt, xt) =
∑
i,j

pt
ix

t
j (log W∗j − log Wij) . [11]

The cumulative loss of potential fitness accrued after T rounds of the
population’s learning process is equivalent to the mismatch load LT

(Equation 8, Appendix D.1.2)

T∑
t=1

ℓ(pt, xt) =
T∑

t=1

∑
i,j

pt
ix

t
j (log W∗j − log Wij) = LT . [12]

This connection reinforces the concept of mismatch load (and substi-
tution load) as the cumulative loss of potential fitness due tomismatch
between types and environmental conditions.

McGee et al. bioRχiv | 5

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


Regret measures the cost of learning
The ‘goal’ of the game for the population player is to minimize its
regret about unfulfilled fitness when looking back after many genera-
tions. In learning theory, regret is defined as the difference between
the cumulative loss that the population experiences as it updates its
strategy pt over time and the loss it could have achieved had it played
an optimal fixed strategy from the beginning. Regret is the true cost
of a learning process: the excess loss one experiences in having to
learn an effective strategy as opposed to knowing an optimal solution
all along.

In general, the optimal strategy for the population depends on the
particular sequence of environments it experiences and is determined
in hindsight with knowledge of this sequence. There are multiple
ways to define an optimal strategy with respect to a given environmen-
tal sequence. Here we consider a notion of optimality that follows
from the dynamics of natural selection (another more general notion
of optimality will be considered below). An evolutionarily stable state
(ESS) pxt is a type distribution that locally maximizes expected fit-
ness for a particular environment xt. In each update, selection always
moves the population in the direction of an ESS for the environment
at that time. If the ESS accessible to the population remains con-
stant over a sequence of environments, then selection will continually
approach and settle on this stationary evolutionarily stable state p
(i.e., p = pxt for all t ∈ [0, T ]; Appendix C.3). A stationary ESS is
the optimal strategy accessible to the population in the sense that it
locally maximizes cumulative expected fitness over the corresponding
sequence of environments. The ESS that the population approaches
may not be globally optimal, but it is the best strategy that can be
reached using replicator dynamics from the population’s initial state.

The population will accruemismatch load as it gradually converges
on the optimum. The population’s regret R̄T with respect to the sta-
tionary ESS p is the amount by which its load LT exceeds the load
L̄T that it would have experienced had it used the optimal strategy p
all along over the same sequence of environments.

R̄T = LT − L̄T [13]

=
T∑

t=1

∑
i,j

(
pt

i − pi

)
xt

j (log W∗j − log Wij) . [14]

Here, the optimal strategy could be non-monomorphic and have a
persistent load (L̄T > 0) due to a stochastic environment. Contrast
this with substitution load, which is defined in a setting where one
type always has the highest fitness, and thus the optimal strategy that
fixes that type incurs no load (i.e., L̄T = 0 for all T ). Therefore,
Kimura’s substitution load is a special case of regret when there is just
one universally optimal type.

For a biological population, regret is equal to the cumulative dif-
ference in expected growth between a hypothetical population using
the optimal strategy p and the evolving population using pt

R̄T =
T∑

t=1

∑
ij

pix
t
j log Wij − pt

ix
t
j log Wij . [15]

If we consider a lineage to be the collection of individuals derived
from an initial population, this quantity can be equivalently expressed
as the negative log ratio of the population’s total lineage size ΓT to
the size of the optimal lineage ΓT (Appendix D.2.2)

R̄T = − log
(

ΓT

ΓT

)
. [16]

Just as relative fitness can refer to the short-term reproductive output
of a type relative to the maximum output of other types, we can inter-
pret the ratio ΓT /ΓT as the relative lineage fitness: the cumulative
growth of the evolving lineage relative to the lineage that maximizes
cumulative growth for the given sequence of environments. There-
fore, the population’s ‘goal’ in the game can be interpreted as seeking
to learn a type distribution that approximates the optimal strategy in
order to maximize its relative lineage fitness and thus minimize its
regret.

Natural selection as a no-regret learning process
In general, it would be intuitive for the population player to adapt
their strategy by increasing the weight of types that have observed low
fitness loss in the past while maintaining diversity to hedge against
the future. Computer scientists and economists have shown that a
simple, yet powerful, learning algorithm known as Multiplicative
Weights Updating (MWU) is an effective solution along these lines
for settings where the environment can change arbitrarily over time
(Freund and Schapire 1999, Cesa-Bianchi and Lugosi 2006, Arora
et al. 2012). Effectively, MWU balances concentrating weight on
types that have performed well (i.e., incurred low loss) in the past
against spreading weight over types that may perform well in the fu-
ture (Appendix C.2.3). A learning rate parameter modulates the em-
phasis given to reacting to loss versus maintaining spread in each up-
date. When the learning rate can be tuned in response to the learning
problem, MWU is guaranteed to learn a strategy that converges on
the performance of the optimal strategy in hindsight, which ensures
that the learner’s per-round regret will approach zero in the long run
(Freund and Schapire 1999, Cesa-Bianchi and Lugosi 2006).

Recent work has shown that replicator dynamics are equivalent
to a fitness-based implementation of MWU with a constant learn-
ing rate that equally balances minimizing fitness loss (maximizing
growth) and maintaining diversity (Chastain et al. 2014, Mehta et al.
2015, Meir and Parkes 2015, Chastain 2017) (Appendix C.2.4). Be-
cause the learning rate implicit in replicator dynamics is not tuned,
the no-regret guarantees from the analysis of MWU do not automat-
ically carry over to selection.

So far we have shown that information gain is a tight lower bound
on regret for selection in the special case of an allele substitution
(where substitution load is a special case of regret). Now we will char-
acterize the cost of selection more broadly by establishing bounds on
load and regret that hold in more general conditions.

When the sequence of environments is characterized by a station-
ary optimal strategy p, the total load for a population undergoing
selection is bounded.

Proposition 3. (Appendix D.3.1) *

LT ≤ L̄T + D(p
∣∣∣∣p0) ∀ T . [17]

This bound guarantees that an evolving population’s load will be
no greater than the load of the optimal strategy plus the divergence
between the population’s initial type distribution p0 and the optimal
composition p. The divergence term represents how much learning
the population has to do at the outset, which translates to excess
load—regret—that accrues while the population is shifting its strat-
egy toward the optimal. In fact, this divergence is an upper bound on
regret with respect to a stationary ESS.

*The main text presents bounds for the limit of weak selection. Appendix D presents bounds in
full generality, which differ from those in the main text by only a small gap term that vanishes
with decreasing selection strength.
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Theorem 1. (Appendix D.3.1) For any game matrix G and for any
sequence of environmental conditions x0, . . . , xT such that the popu-
lation’s initial type distribution p0 is in the basin of attraction of an
evolutionary stable state p that remains stationary for all t ∈ [0, T ], the
total regret R̄T with respect to p of the trajectory of type distributions
p0, . . . , pT generated by replicator dynamics is bounded from above by

R̄T ≤ D(p||p0) ∀ T , [18]

with equality as T → ∞ : limT →∞ R̄T = D(p||p0) .

In other words, the total cost of selection with respect to a partic-
ular ESS is equal to the amount of learning that the population must
do to arrive there. The total regret is finite, which guarantees that the
per-round regret of selection approaches zero in the long term (i.e.,
R̄T /T → 0 as T → ∞). Therefore, selection is a no-regret algo-
rithm with respect to a fixed learning target, and selection is guaran-
teed to arrive at a type distribution that maximizes relative lineage
fitness in this setting. This means that evolution by natural selection
is an asymptotically optimal algorithm for solving the fundamental
learning problem faced by evolving populations.

The cost of information acquisition by natural selection

Populations that evolve by natural selection accumulate both infor-
mation and fitness losses as a result of this learning process. Kimura
noted a proportional relationship between information and load in the
special case of an allele substitution (Proposition 1), and we observe
that the accumulation of load outpaces that of information in such
cases (Proposition 2, Figure 3). Having formalized and generalized
the cost of selection in terms of regret, we can now investigate the
cost of information acquisition by natural selection more generally.

The following result relates the information gained by selection in
a single generation (as measured by the divergence D(pt+1||pt)) to
the expected fitness loss due to type mismatch in the current and next
generations.

Proposition 4. (Appendix D.4.1)

D(pt+1||pt) ≤ ℓ(pt, xt) − ℓ(pt+1, xt) [19]

=
∑
i,j

(
pt

i − pt+1
i

)
xt

j (log W∗j − log Wij) . [20]

We can view the loss difference in Proposition 4 as the single-step
regret that the population has about not already having the composi-
tion enjoyed by the next generation. This single-step regret is always
greater than or equal to the information gained in that step. If the
population were to have no regret relative to the next generation, then
it would have nothing to gain—fitness nor information—in changing
its composition. Thus the experience of regret must precede the ac-
quisition of information.

The population’s cumulative information gain IT after T genera-
tions is measured by the divergence D(pT ||p0) of its evolved type dis-
tribution from its initial composition (Equation 2). The total amount
of information that can be gained for a particular ESS p is given
by the initial potential information D(p||p0). So long as the ESS
remains stationary, the population will eventually converge on the
ESS and acquire all of the potential information (i.e., pt → p and
IT → D(p||p0) as T → ∞). We recognize the initial potential in-
formation as the same divergence that bounds the population’s regret
with respect to a stationary ESS (Theorem 1). Therefore, we general-
ize Kimura’s finding that the cost of selection is proportional to the
amount of information the population lacks out the outset:

Theorem 2. (Appendix D.4.2) For any game matrix G and for any
sequence of environmental conditions x0, . . . , xT such that the popu-
lation’s initial type distribution p0 is in the basin of attraction of an
evolutionary stable state p that remains stationary for all t ∈ [0, T ], the
total information gain IT and the total regret R̄T with respect to p of the
trajectory of type distributions p0, . . . , pT generated by replicator dynam-
ics both converge on the value of the initial potential information

lim
T →∞

IT = lim
T →∞

R̄T = D(p||p0) . [21]

It follows from Theorem 2 that the cost of each bit of informa-
tion is a two-fold reduction in relative lineage fitness in the long run.
While a population that evolves by natural selection accumulates re-
gret, all of the excess fitness loss it experiences is eventually translated
into information encoded in its distribution of types. Selection is a
highly efficient information acquisition process in this sense.

Given that regret is equal to subsitution load when the ESS p is
monomorphic (such that L̄T = 0 and R̄T = LT

sub), our experimen-
tal results (Figure 3) can be seen as validating the regret predictions
given by Theorem 1 and Theorem 2 in that case. Even in our stochas-
tically fluctuating real-world populations, natural selection converts
all regret to information.

Learning problems faced by evolving populations
The flexibility of this learning theoretic view of selection and its impli-
cations can be better understood by considering a few concrete cases.

Constant environments
First, let us revisit the simple case of a constant environment (i.e.,
xt = xt+1 for all t). When the makeup of the environment does
not change, a single type will be the best option in every round. Se-
lection will continually approach fixation of this optimal type, which
is a stationary ESS. We know from Theorem 1 that a population that
evolves by natural selection will achieve vanishing per-round regret in
learning this optimal strategy.

In a constant environment, achieving the goal of minimizing re-
gret is equivalent to maximizing fitness in an absolute sense. Haldane
and Kimura considered the simplest possible environment with only
one unchanging condition (i.e., m = 1). In this case, selection in-
creases the frequency of the type that has the highest fitness in this
condition, which maximizes the mean fitness of the population as de-
scribed by Fisher’s fundamental theorem (Fisher 1930). Similarly, if
the environment consists of multiple conditions (i.e., m > 1) but the
frequency of these conditions does not change, then selection will
consistently favor the single type with the highest expected fitness
over the constant distribution of conditions (Figure 5, left), which
maximizes the geometric mean fitness in keeping with Gillespie’s ge-
ometric mean principle (Gillespie 1974).

Frequency dependence
Constant environments are only a small subset of what the learning
theoretic view of evolution can express. In fact, there are no restric-
tions on the how the environment’s distribution of conditions can
change over time. For example, the environment’s strategy in each
round may depend on the population’s current or prior strategies,
which allows for cases of frequency-dependent selection. For exam-
ple, if the frequencies of conditions that individuals experience are set
by the frequencies of types in the population (i.e., m = n, xt = pt),
then the make up of the “environment” is defined by the composi-
tion of the population itself, and fitnesses reflect interactions between
types (the PvE game becomes an effective evolutionary game (Kaz-
natcheev 2017)). This context is of interest to evolutionary biology
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Fig. 5. Load, regret, and information gain in different environmental contexts. Results from simulations of replicator dynamics in three different contexts
(columns) are shown. In each column, the matrix G defines the log fitnesses (growth rates) for 3 types in each of 3 environmental conditions. Selection updates
the type composition of the population along the black trajectory in the simplex. Gray dotted lines in the simplex depict the KL divergence D(p||p0) of a stationary
ESS p from the population’s initial state p0, where applicable. Stacked frequency plots show the distribution of environmental conditions xt over time (i.e., a vertical
slice at time t represents a distribution xt over the environmental conditions shown in the game matrix). The mismatch load of the evolving population (LT , orange
line) and of either the ESS composition (LT , dashed gold line, left and center columns) or the empirically optimal composition (L̃T , dashed gold line, right column)
are plotted over time. The bottom-most plot in each column gives the information gain (teal line) and either the ESS regret (R̄T , red line, left and center columns)
or empirical regret (R̃T , red line, right column) over the course of selection. (Constant environment, left) The environment is heterogeneous but the distribution
of conditions is constant. Type 1 (green) has the highest expected fitness and increases in frequency in every generation. However, Type 1 incurs non-zero loss in
Condition 2, so the optimal composition that is fixed for Type 1 accrues load over time (dashed gold line). Fixation of Type 1 is a stationary ESS, so regret is bounded
by the initial potential information D(p||p0) (Theorem 1). Information gain and regret converge on this value in the long-run (Theorem 2). (Frequency-dependent
selection, center) Here the environmental conditions are defined by the types themselves, and the distribution of conditions is set to the type distribution in every
generation (i.e., xt = pt). This frequency dependence and choice of G define a “Rock-Papers-Scissors” scenario, where each type (‘R’, ‘P’, or ‘S’) is advantaged
over one type and disadvantaged to the other type. Selection leads to a dampened oscillation in type frequencies that converges on a mixed stationary ESS. The
existence of a stationary ESS implies that regret converges on the initial potential information D(p||p0) (Theorem 1). Information gain fluctuates before converging
on the regret and initial potential information (Theorem 2). (Cycling environment, right) The environment consists of a single condition that switches cyclically over
time. The ESS changes with each environmental shift, and selection moves the population in different directions in response to each condition. Type 1 has the highest
expected fitness over the entire cycle and tends to increase in frequency. The empirically optimal strategy initially alternates in response to the environmental cycle
before settling on the Type 1 fixation composition for the long-run. In this example, selection causes the population to converge toward the empirically optimal strategy,
so the empirical regret is finite. The empirical regret exceeds the information gain at all times (Theorem 4).

as it opens up new kinds of dynamics (e.g., social dilemmas) and is
known to have a transformative effect on the adaptive capabilities of
evolving populations (Kaznatcheev 2020).

The frequency-dependent setting reveals why the goal of the game
is to maximize relative lineage fitness (i.e., minimize regret) rather
than to maximize fitness outright. To illustrate this, consider a spe-
cific learning problem corresponding to the Prisoner’s Dilemma game
described in Supplementary Figure D7 (note that this is a scenario
where xt = pt). In the Prisoner’s Dilemma the best outcome occurs
if the population plays an all-cooperate strategy, which achieves the
maximum possible population mean fitness. However, replicator dy-
namics lead toward a population of all defectors, which continually
reduces the population’s mean fitness and clearly does not maximize

fitness outright.
Recall that the only feedback the population player receives is the

average fitness loss of each type in each round of the game. At each
step, the population observes that no matter the environmental distri-
bution the defector type always has lower expected loss (higher aver-
age fitness) than the cooperator. Based on this evidence, the defector
type is seen to be better off in every round, and replicator dynam-
ics increases its frequency accordingly. Arriving at an all-cooperate
strategy would require the population player to use information that is
not available to it (e.g., knowledge of G or knowledge of the environ-
ment’s process for updating xt) or to adopt a learning algorithm that
is not generally robust across learning problems (e.g., up-weighting
types with high relative loss). Thus when facing some environments,
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the population may be simply unable to maximize fitness in absolute
terms by using a general online learning process.

In general, the attainable goal for the population is to maximize its
cumulative fitness relative to the maximum possible fitness that could
be achieved by a fixed strategy given the same sequence of environ-
ments. Evaluating the performance of a learning process with respect
to the fixed sequence of environments in hindsight may seem strange,
particularly when that sequence of environments was dependent on
the trajectory of the population while the learning was underway. But
reframing regret in terms of relative lineage fitness lends intuition to
the fixed retrospective nature of this quantity.

For example, consider a large, well-mixed population of cells that
evolves according to replicator dynamics in the Prisoner’s Dilemma
scenario (Supplementary Figure D7). Suppose we identify two very
small subpopulations: one that has the same initial type distribution
as the overall population and one that is initially all defectors. In the
first subpopulation, replicator dynamics increases the frequency of de-
fectors and tracks the change in the overall population. The second
subpopulation remains fixed for defectors, which turns out to be opti-
mal. Given that these subpopulations are small relative to the overall
population, their trajectories do not affect the makeup of the overall
population that constitutes the “environment.” The two subpopula-
tions therefore experience the same sequence of environments, and
it is natural to ask how the cumulative growth of these two lineages
compare given the conditions that play out. Relative lineage fitness
quantifies this comparison. The more effective the learning process
used by the first subpopulation, the greater its relative lineage fitness
and the less regret it experiences. Just as the growth of a learning
subpopulation can be compared to a fixed subpopulation in the same
physical environment, the cost of a learning process is measured with
respect to the fixed optimal strategy in hindsight, whether or not such
an optimal population actually existed.

Arbitrary environmental change
In this section, we extend the concept of regret to the fully general
setting where no assumptions are made about the environment. Re-
gret measures the cumulative fitness loss of an evolving population
with respect to a fixed optimal strategy for the same sequence of en-
vironments. So far, we have considered the fixed optimal strategy to
be an ESS that is stationary over the observed sequence of environ-
ments. However, when the distribution of environmental conditions
xt is free to fluctuate arbitrarily, shifts in the environment may cause
the evolutionarily stable states to change. Whereas an environmental
sequence with a stationary ESS represents a basic learning problem
with a fixed solution, environments where the stable state switches
from one interval to the next can be seen as a series of problems over
which the population must integrate its learning.

If we make no restrictions on the sequence of environments, then
we cannot determine a fixed optimal strategy based on the process
that generates the environmental sequence or on the dynamical tra-
jectory of the population, since these are free to change at any time.
Instead, we consider the empirically optimal strategy:

p̃T = arg min
q

T∑
t=1

∑
i,j

qix
t
j (log W∗j − log Wij) , [22]

which is the fixed type distribution that would have minimized cu-
mulative loss (Equation 12) for the particular observed sequence of
environments in hindsight after T rounds.

In the learning problems that we have considered so far (i.e., con-
stant environments and the Prisoner’s Dilemma) the empirically opti-
mal strategy is always a stationary ESS as well (i.e., ∃ p and p = p̃T

∀ T ), but this is not always the case. For example, in the Snowdrift
game scenario shown in Supplementary Figure D7 replicator dynam-
ics carry the population to a polymorphic ESS, while the empirically
optimal strategy is to play all-defect, which globally minimizes loss
(maximizes fitness) for the given sequence of environments.

We refer to regret measured with respect to the empirically opti-
mal strategy p̃T as empirical regret:

R̃T = LT − L̃T [23]

=
T∑

t=1

∑
i,j

(
pt

i − p̃T
i

)
xt

j (log W∗j − log Wij) , [24]

where L̃T is the cumulative loss that would have been achieved using
p̃T all along in the observed sequence of environments.

In general, the environment may fluctuate in such a way that the
evolutionarily stable states change as time goes on. For example, in
the Rock-Paper-Scissors and cyclical environment games shown in
Figure 5, the strategy that is empirically optimal in hindsight changes
in response to environmental shifts as the game progresses. The ac-
cumulation of excess load while learning strategies that turn out to
be suboptimal later on increases the cost of the overall learning pro-
cess. Selection is an asymptotically no-regret algorithm with respect
to fixed learning targets, but the regret bound from Theorem 1 does
not apply when the ESS accessible to the population is not stationary.

Nevertheless, results from analysis of the MWU algorithm allow
us to bound the cumulative loss—mismatch load—for selection even
in this general setting.

Proposition 5. (Freund and Schapire 1999)

LT ≤ e

e − 1

(
L̃T + D(p̃T

∣∣∣∣p0)
)

∀ T . [25]

This bound is similar to the bound on load in the setting of a sta-
tionary ESS (Proposition 3), but is worse by a constant factor (where
e denotes Euler’s number) that represents the additional cost of the
population being caught out and having to change direction due to
changes in the learning target. Even still, this bound guarantees that
the mismatch load for an evolving population in any environment will
not be much more than the minimum possible load L̃T in the long
run.

This result leads to a corresponding upper bound on the popula-
tion’s empirical regret in any environment.

Theorem 3. (Appendix D.3.2) For any game matrix G and for any se-
quence of environmental conditionsx0, . . . , xT , the total empirical regret
R̃T with respect to p̃T of the trajectory of type distributions p0, . . . , pT

generated by replicator dynamics is bounded from above at all times by

R̃T ≤ D(p̃T
∣∣∣∣p0) + 1

e − 1

(
L̃T + D(p̃T

∣∣∣∣p0)
)

∀ T . [26]

In the fully general case, the population’s regret is not bounded by
a finite value and may continue to increase over time. The gradual
nature of selection causes the population to accrue regret whenever it
must move to a newESS. If environmental fluctuations cause the ESS
to change such that that the population cannot settle into an optimum
for the long haul, then the population will continue to accumulate
regret as it adapts to each new learning target. This general regret
bound makes no assumptions whatsoever about the types, conditions,
fitnesses, or sequence of environments that constitute the learning
problem. Therefore, this bound provides an upper limit on the total
empirical regret a population can possibly experience.
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Environment Homogeneous (m = 1) Heterogeneous (m > 1)
Constant (xt = xt ∀ t) Constant Time-Varying

Stationary ESS (p = pxt ∀ t) Stationary ESS Stationary ESS Arbitrary

Cost of information
IT T
−−→ LT

sub
Kimura (1961),
Proposition 2

IT T−−→ R̄T

Theorem 2
IT T−−→ R̄T

Theorem 2
IT ≤ R̃T −1 ∀ T

Theorem 4

Regret bound
LT
sub

T
−−→ − log p0

∗
Kimura (1961),
Proposition 1

R̄T T
−−→ − log p0

∗
Theorem 1

R̄T T
−−→D(p||p0)
Theorem 1

R̃T ≤ D(p̃T ||p0) + 1
e−1

(
L

T + D(p̃T ||p0)
)
∀ T

Theorem 3

Table 1. Summary of results relating regret and information gain under increasingly general conditions.

The arrow notation aT T−−→ b signifies convergence (limT →∞ aT = b), and the angled arrow notation aT T
−−→ b signifies convergence from below

(limT →∞ aT = b and aT ≤ b ∀ T ).

When the environment is variable, the population’s information
gain may rise and fall over time as it adapts to changing conditions.
We can interpret these fluctuations as the population gaining infor-
mation about the present environment and “unlearning” information
it had acquired about spurious trends in the past. For example, con-
sider the Rock-Paper-Scissors scenario shown in Figure 5 (center). In
response to conditions that initially favor the S type, the population
“overlearns” a S-dominant strategy, and the information gain exceeds
the initial potential information as the population overshoots the ESS
composition that is optimal for the long term. Ongoing shifts in the
frequency-dependent environment lead to oscillations in information
gain as the population cyclically learns and unlearns strategies dom-
inated by each type in turn. Eventually the population learns a bal-
anced optimal strategy as it settles into the stationary ESS, and the
total information gain converges on the initial potential information.

Despite possible fluctuations in information gain, selection contin-
ually makes progress in learning about the current ESS (pxt ). That
is, the potential information D(pxt ||pt) that remains from the popu-
lation’s current state pt decreases monotonically over intervals where
the ESS pxt remains constant (Appendix B.2.2).

In all cases, we find that the information gain is bounded by the
empirical regret at all times

Theorem 4. (Appendix D.4.3) For any game matrix G and for any se-
quence of environmental conditions x0, . . . , xT , the total information
gain IT +1 of the trajectory of type distributions p0, . . . , pT +1 generated
by replicator dynamics is bounded at all times by the total empirical regret
R̃T with respect to the empirically optimal strategy p̃T

IT +1 ≤ R̃T ∀ T . [27]

For a biological population that evolves by natural selection, every
bit of information about the environment requires at least a commen-
surate reduction in lineage fitness relative to the empirically optimal
strategy. This result holds for any evolutionary learning problem (i.e.,
any choice of G and sequence of xt) and confirms that there is a
minimum fitness cost of information for natural selection in all con-
texts (note that our Proposition 2 is a special case of Theorem 4 when
p̃T is monomorphic such that L̃T = 0 and thus R̃T = LT

sub, Ap-
pendix D.4.3).

In general, when the environment changes arbitrarily the popula-
tion pays a higher price for information. We have seen that the upper

bound on regret is higher in environments for which the optimal strat-
egy in hindsight changes over time due to additional load associated
with the population learning evolutionarily stable states that are not
ultimately optimal in the long run (Theorem 3). In environments that
fluctuate with a pattern that can be learned, selection will eventually
settle on a strategy that approximates the empirically optimal strat-
egy and achieves vanishing per-round regret (e.g., Figure 5, right). In
such a case, the cost per bit converges on a finite value in the long run.
When the environment varies unpredictably, there may be no stable
empirically optimal strategy, and regret and the cost per bit may not
converge. In any case, the maximum regret cost of information for
selection is bounded.

Comparing natural selection to other learning algorithms
Replicator dynamics is not the only conceivable algorithm that the
population player could have used to update its strategy. Any algo-
rithm that adapts the population’s strategy by increasing the weight
of types that have observed low fitness losses in the past would be rea-
sonable. The learning algorithm known as Follow the Leader (FTL)
is an extreme implementation of this heuristic, which places all of the
weight in each round on the single type that has received the lowest
cumulative loss against the previous conditions of the environment
(Appendix C.2.3). When the same type always has the highest fit-
ness, an FTL learner will fix the optimal type after a single round,
and its only regret will be the excess loss observed for the initial type
distribution. Replicator dynamics will not be as fast, but selection
will still converge on the optimal type. In such a case, a population
that learns using selection will have lower relative lineage fitness and
more regret than one using FTL, but this “inefficiency” is bounded,
and all regret is converted to information (Theorem 1, Theorem 2).

Learning processes such as FTL that react more strongly than se-
lection to each round of observed losses can achieve lower regret than
selection in simple environments, but environments that are highly
variable or unpredictable can drive such reactive learning processes to
high regret. On the other hand, learning processes that are less respon-
sive than selection can experience high regret in simple environments
because they approach optimal strategies even more gradually. The
balance that selection strikes in minimizing loss by responding to pre-
vious observations while maintaining diversity to hedge against the
future makes it generally robust to arbitrary environmental change.

Theorem 3 provides a benchmark for comparing the worst-case
performance of selection to other learning algorithms, as is standard
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practice in computer science. When the environment is variable such
that the optimal strategy has non-trivial load, the worst-case regret
(and thus the maximum cost of information) of selection is lower than
that of other learning processes that are substantially more or less re-
active. (Appendix D.3.3, Figure D6). Further delineating the classes
of environments where selection typically outperforms other learning
processes is an area for future research.

Discussion
Our results, summarized in Table 1, highlight the intimate relation-
ship between fitness and information. When a population has types
with suboptimal fitnesses for the current conditions, natural selec-
tion incorporates this information about the environment by grad-
ually adapting its composition. If the population does not suffer sub-
optimal fitnesses then there is nothing it needs to learn. Naturally,
then, the accumulation of fitness losses must precede and outpace
the acquisition of information, but selection effectively converts ob-
served losses to information gain. As a population gains information
it arrives at a more adaptive matching of types to environmental con-
ditions and achieves higher relative lineage fitness than a population
without this information. Potential information not yet held is po-
tential growth forsaken.

A learning theoretic view of evolution establishes regret, ameasure
of relative load, as the appropriate definition of the cost of selection.
Populations that evolve by selection reliably learn a strategy that max-
imizes relative lineage fitness and achieves vanishing per-generation
regret relative to a fixed learning targets (i.e., a stationary ESS). In
general, selection balances load minimization and diversity maximiza-
tion, which enables the process to fare well in complex environments.

These results generalize the concept of substitution load and
breathe new intuition into the concept of “the cost of selection.” In ad-
dition, we revive, formalize, empirically validate, and extend Kimura’s
initial insight that there is a fundamental fitness cost for every bit of
information that is acquired by selection. That said, our theory and
experiments demonstrate that natural selection is a highly effective
learning process that converts all regret to information with respect
to particular learning problems. In addition, we show that the price of
information is better for selection than for some alternative learning
processes in the worst case.

We have focused on natural selection as a process that acquires
adaptive information about standing variation. However, selection
interacts with other forces in biological evolution. Notably, mutation
introduces new types and expands the set of compositions that se-
lection can learn about. Together mutation and selection move pop-
ulations across adaptive landscapes, but finding optima in complex
landscapes is a computationally hard problem (Kaznatcheev 2019).
Reconciling the effectiveness of selection as a learning process with
the complexity of evolutionary search is important to understanding
the performance of Darwinian evolution in an algorithmic sense. In
addition, determining the extent to which recombination impacts the
rate of information acquisition, how this depends on the fitness land-
scape, and whether any such effects confer adaptive advantages at the
level of the individual is another interesting direction for future re-
search. We anticipate that continued integration of evolutionary the-
ory, information theory, and learning theory will lead us to a richer
understanding of adaptive evolution.

Materials and Methods

Bacterial strains
Escherichia coli B (REL606) strains were used in selection experiments and
related assays. A “wild type” strain (WT) and three strains with unique muta-
tions in the RNA polymerase rpoB gene (M1, M2, M3) were obtained with
permission from the−80◦C strain archive from Lindsey et al. (2013). Muta-
tions to the rpoB gene conferred each mutant strain with a distinct exponen-
tial growth rate that was reduced from that of the WT strain (Supplemental
Figure E1). As the strain with the optimal growth rate, the WT strain was
transformed with a plasmid engineered to carry the green fluorescent protein
(GFP) genemGFPmut2. The rpoB mutant strains were each transformed with
plasmids engineered to carry the red fluorescent protein (RFP) gene mScarlet-
I. A full description of all strains and plasmids used in this study can be found
in Appendix E.1.

Selection experiments
Strains were cultured in standard Luria-Bertani (LB) broth with 15µg/mL
tetracycline for marker plasmid retention (hereafter referred to as “media”).
Selection competition experiments were conducted between three pairs of
strains: WT vs. M1, WT vs. M2, and WT vs. M3. Each pair of strains par-
ticipated in three competitions with different initial strain frequency compo-
sitions: WT at approximately 12.5%, 25%, and 50% of the initial population,
respectively. Selection experiments were initiated by combining the strains to
be competed in the designated ratios at a density of ~1× 106 cfus/mL in 25
mL of freshmedia. Every 4 hours, a 1 mL sample was taken from each compe-
tition culture to measure strain densities and frequencies using flow cytometry
(see Appendix E.2.2 for more information). At the same time, a sample of the
culture was transferred to 25 mL of fresh media using an adaptive transfer pro-
tocol that ensured that the culture would remain in exponential growth while
maintaining a measurable density for flow cytometry (see Appendix E.2.1 for
more information). Competitions proceeded in this fashion for 36 hours. See
Appendix E.2: Supplemental Methods for more information.
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Appendices
These appendices aim to provide comprehensive background, derivation, and interpretation for all of the key concepts and results discussed
in this work. It is our hope that any interested reader, regardless of background, can achieve an understanding of these topics by working
through this material without having to rely on other sources. This work draws from several rich areas of theory, but necessary concepts from
information theory, game theory, and learning theory are introduced throughout. We take care to derive definitions and results step-by-step
and with interpretation, and most results require only basic mathematical tools. Appendices A, B, and C review relevant concepts and results
from the literature and establish the formalisms used in this work. Readers interested only in proofs of key results from this work can turn
to Appendix D. Supplemental methods and results from our selection experiments can be found in Appendix E.
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Appendix A: Modeling Natural Selection
A.1 The replicator dynamics model of natural selection
Replicator dynamics are a standard model of evolution that describe the action of natural selection in large populations of replicators
without mutation, recombination, or other sources of new variation. Replicators are entities that generate copies of themselves
and may represent alleles, genotypes, strategies, beliefs, etc. Populations may consist of multiple types of replicators, each with a
characteristic fitness that gives their rate of reproduction. Replicator types with above-average fitness will increase their frequency in
the population, and types with below-average fitness will decrease in frequency. Replicator dynamics are widely studied in population
genetics, ecology, evolutionary game theory, learning theory, economics, and other contexts.

A.1.1 Discrete-time replicator dynamics (discrete generations)
Fitness and growth

First we consider a population of replicators with a set of n alternative types that reproduce in discrete generations. Let N t
i be the

number of individuals of the ith type in generation t. The expected number of offspring left by each individual of type i in a generation
is given by Wi, which is referred to as the Wrightian fitness of the ith type (In general, the fitness of a type may depend on the
current environmental conditions, which we will develop further in Appendix A.2). The number of individuals of type i after a total
of T generations is given by

NT
i = N0

i

T∏
Wi . [A1]

where N0
i is the initial number of individuals of type i. The expected number of descendants per initial individual after T generations

is given by the ratio NT
i /N0

i =
∏T

Wi.
Suppose that we observe NT

i individuals of type i after T generations, and we wish to know the effective growth rate of this
subpopulation over this interval. In other words, what average growth rate r̂i corresponds to the reproductive output of individuals
of this type? Solving the following expression for r̂i, we have

er̂iT = NT
i

N0
i

[A2]

r̂iT = log
(

NT
i

N0
i

)
[A3]

r̂i = 1
T

log
(

NT
i

N0
i

)
[A4]

r̂i = 1
T

log

(
N0

i

∏T

t=0 Wi

N0
i

)
using Equation A1 [A5]

r̂i = 1
T

log

(
T∏

t=0

Wi

)
[A6]

r̂i = 1
T

T∑
t=0

log Wi . [A7]

The effective growth rate of the ith type over many generations is equal to the expected logarithm of the type’s fitness, and we refer
to the log fitness log Wi as the effective growth rate of type i in a single generation (i.e., r̂i = log Wi for T = 1).

The relative fitness of the ith type, wi, is considered with respect to the highest fitness of any type in the population, W∗

wi = Wi

W∗
. [A8]

By this definition, the relative fitness of the optimal type is equal to 1 (i.e., w∗ = W∗/W∗ = 1), and the relative fitnesses of all other
types take values in [0, 1]. As such, we may also choose to represent the relative fitness of the ith type as

wi = 1 − ki , [A9]

where ki ∈ [0, 1] is the Wrightian selection coefficient of the ith type, and k∗ = 0 is the selection coefficient of the optimal type.
This expression of relative fitness can be interpreted as saying that for every 1 offspring left by the optimal type there are 1 − ki

offspring left by the ith type.
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Dynamics of type frequency change

The frequency of type i in the population in generation t is defined as

pt
i = N t

i∑
z

N t
z

. [A10]

Then the change in the frequency of type i from one generation to the next is given by

pt+1
i = N t

i Wi∑
z

N t
zWz

[A11]

= pt
iWi∑

z
pt

zWz
[A12]

= pt
iwi∑

z
pt

zwz
. [A13]

Discrete-time replicator dynamics refer to this dynamical map

pt+1
i = pt

iWi∑
z

pt
zWz

, [A14]

where
∑

z
pt

zWz is the mean fitness of the population at time t. This dynamic re-weights the frequencies of types proportional
to their fitnesses such that types with above average fitness increase in frequency and those with below average fitness decrease in
frequency.

A.1.2 Continuous-time replicator dynamics (overlapping generations)
Fitness and growth

While not the focus of the main text, we can also consider the evolution of populations with overlapping generations. Rather than
adding individuals to the population at discrete unit intervals, individuals are added to the population at multiple instances per unit
time. To capture this, we can express the expected reproductive output per unit time as

Wi =
(

1 + ri

ϵ

)ϵ

, [A15]

where ri gives the expected number of offspring above replacement (or below, if negative) that each i individual contributes to the
population per unit time, and ϵ gives the number of instances that offspring are added per unit time. When ϵ = 1, then this definition
reduces to the discrete generation case, where Wi = 1 + ri defines the absolute Wrightian fitness of the ith type. On the other hand,
fully continuous growth is represented by allowing new individuals to be added to the population at an infinite number of points per
unit time, which results in the familiar exponential growth term

lim
ϵ→∞

(
1 + ri

ϵ

)ϵ

= eri . [A16]

Then the number of i individuals at time t in a continuously growing population is given by

N t
i = N0

i erit , [A17]

which is known as the Malthusian growth model. Here we see that the parameter ri sets the exponential growth rate of the ith type,
and we refer to this rate ri as the Malthusian fitness of the ith type. The Malthusian selection coefficient si of the ith type is
defined as the difference between the Malthusian fitness (i.e., growth rate) of the optimal type and that of the ith type

si = r∗ − ri . [A18]

Dynamics of type frequency change

In this section, we consider the continuous analog of the discrete replicator dynamics presented above. The frequency of the ith type
at time t, pt

i = N t
i /
∑

z
N t

z , is defined as it was for the discrete-time model. We find an expression for the change in this frequency
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by taking the derivative

dpt
i

dt
= d

dt

N t
i∑

z
N t

z
pt

i = N t
i∑

z
N t

z
[A19]

=
(

d
dt

N t
i

)∑
z

N t
z − N t

i

(
d
dt

∑
z

N t
z

)(∑
i
N t

i

)2 quotient rule [A20]

=
N t

i ri

∑
z

N t
z − N t

i

∑
z

N t
zrz(∑

z
N t

z

)2
dN t

i

dt
= d

dt
N0

i erit = N0
i eritri = N t

i ri [A21]

=
N t

i

(
ri

∑
z

N t
z −
∑

z
N t

zrz

)(∑
z

N t
z

)2 [A22]

=
pt

i

(
ri

∑
z

N t
z −
∑

z
N t

zrz

)∑
z

N t
z

pt
i = N t

i∑
z

N t
z

[A23]

=
pt

iri

∑
z

N t
z∑

z
N t

z
−

pt
i

∑
z

N t
zrz∑

z
N t

z
[A24]

= pt
iri − pt

i

∑
z

N t
z∑

v
N t

v
rz [A25]

= pt
i

(
ri −

∑
z

pt
zrz

)
. [A26]

Thus, the continuous-time replicator dynamics are given by the system of differential equations

dpt
i

dt
= pt

i

(
ri −

∑
z

pt
zrz

)
, [A27]

where
∑

z
pt

zrz is the mean Malthusian fitness (i.e., growth rate) of the population at time t. Like the discrete-time dynamics, this
dynamic re-weights the frequencies of types according to their fitnesses relative to the population mean fitness.

A.2 Modeling variable environments
In general, the fitness of a individual depends on both its type and its environment, and we are ultimately interested in modeling
the process of natural selection in contexts where conditions and fitnesses change over time. In this section we extend the standard
replicator dynamics models to support both heterogeneous and time-varying environments, broadly defined.

Suppose the population occupies an environment that is comprised of a set of m distinct environmental conditions. We assume
that every individual in the population experiences an independent environmental condition, as if each individual occupies a separate
part (i.e., micro-environment) of the physical environment. The association of specific individuals to particular conditions is assumed
to be random, and the probability that a given individual experiences the jth condition at time t is given by xt

j . The condition
distribution xt defines the make up of the environment at time t, and scenarios of environmental change can be modeled by specifying
a particulars sequence of environments {x0, x1, . . . , xT }.

We take a very expansive view of what constitutes an “environment.” Essentially any set of contextual factors that have a con-
ditional impact on the fitnesses of types can be considered an environmental condition. For example, conditions may represent the
abiotic conditions experienced by individuals, the types of other replicators encountered by individuals, or even the identity of other
alleles carried by individuals. Similarly, the sequence of environments {x0, x1, . . . , xT } may be generated according to any pro-
cess, including as a function of time, as a function of type frequencies, as a stochastic or random process, as a “pre-programmed”
sequence, etc. Throughout this work we consider various environmental contexts of interest as well as the fully general setting where
no assumptions are made about the sequence of environmental condition distributions.

In the main text, we frame this model of discrete-time replicator dynamics in variable environments in terms of repeated play
of a two-player, population versus environment game, which lends itself to learning theoretic analysis; see Appendix C.2.2 for more
information about this formalization.

Discrete-time replicator dynamics in variable environments:

Let Wij denote the Wrightian fitness of an individual of type i in environmental condition j. The average fitness of type i across
the distribution of environmental conditions xt is denoted ⟨Wi⟩t =

∑
j

xt
jWij , and the average fitness the population across all

types and conditions is denoted ⟨W ⟩t =
∑

ij
pt

ix
t
jwij . Then the discrete-time replicator dynamics in a heterogeneous environment

becomes
pt+1

i = pt
i ⟨Wi⟩t

⟨W ⟩t . [A28]
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Continuous-time replicator dynamics in variable environments:

Let rij denote the Malthusian fitness (i.e., growth rate) of an individual of type i in environmental condition j. The average growth
rate of type i across the distribution of environmental conditions xt is denoted ⟨ri⟩t =

∑
j

xt
jrij , and the average growth rate of

the population across all types and conditions is denoted ⟨r⟩t =
∑

ij
pt

ix
t
jrij . Then the continuous-time replicator dynamics in a

heterogeneous environment becomes
dpt

i

dt
= pt

i

(
⟨ri⟩t − ⟨r⟩t

)
. [A29]

Appendix B: Natural Selection as an Information Acquisition Process
B.1 Information Measures
Information theory uses probability theory and statistics to formalize the familiar notion that information is that which reduces
uncertainty. The more an observation reduces one’s uncertainty about the state of some system, the more information that observation
provides. Information-theoretic measures allow us to rigorously quantify both uncertainty and information in a system.

Entropy quantifies uncertainty
Consider a random variable X that can take some value i ∈ X (e.g., the outcome of a die roll), and suppose you assign a probability
p(i) to each outcome value based on your belief of how likely it is to occur. If you are fairly certain that one of the outcomes will occur,
you will ascribe high probability to that outcome and low probabilities to all other outcomes. If you are more uncertain about which
outcome will occur, your probability distribution p will be more uniform. This notion of uncertainty is quantified by the entropy:

H(X) = −
∑
i∈X

p(i) log p(i) = E [− log p] = E
[

log 1
p

]
. [B30]

Entropy is a property of the spread of the distribution p and does not depend on the values of the random variable X . As such, the
entropy of p may also be denoted H(p).

Entropy can be interpreted as the expected surprisal of an outcome, where the surprisal of the outcome i under the probability
distribution p is defined as log (1/p(i)). If an outcome that was ascribed a high probability of occurring does occur, this gives low
surprisal (log (1/p(i)) → 0 as p(i) → 1), but the occurrence of an outcome that was ascribed low probability gives high surprisal
(log (1/p(i)) → ∞ as p(i) → 0). The more uncertain you are about the outcome — the more uniform your probability distribution
— the more surprising observed outcomes are on average, and the higher the entropy.

The joint entropy H(X, Y ) of two discrete random variables X and Y is the entropy of their joint probability distribution

H(X, Y ) = −
∑

i∈X ,j∈Y

p(i, j) log p(i, j) . [B31]

The conditional entropy H(X|Y ) measures the expected amount of uncertainty about X that remains when the value of Y is known,
averaged over possible values of Y

H(X|Y ) =
∑
j∈Y

p(j)H(X|Y = j) = −
∑
j∈Y

p(j)
∑

x

p(i|j) log p(i|j) . [B32]

Reflecting the relationship between information and uncertainty, other information measures can be expressed as linear combinations
of entropies.

Relative entropy (KL divergence) quantifies information gain
Consider a random variable X that is hypothesized to follow some probability distribution q. Now suppose that you receive new
evidence that leads you to update your hypothesis to some new probability distribution p. How much information did this update
provide? Information gain quantifies how much this new evidence reduces your uncertainty (i.e., expected surprisal) as the reduction
in entropy under the posterior distribution p relative to the prior distribution q

D(p
∣∣∣∣q) = Hp(q) − Hp(p) = Ep

[
log 1

q

]
− Ep

[
log 1

p

]
=
∑
i∈X

p(i) log p(i)
q(i) . [B33]

Here both expectations of surprisal (i.e., entropies) are calculated under the posterior distribution p, which is the latest working
hypothesis of the true event probabilities (Note: Hp(q) = −

∑
x

pi log qi is termed the cross entropy between p and q). Information
gain D(p

∣∣∣∣q) is synonymous (i.e., equivalent) to the relative entropy or Kullback-Leibler divergence between distributions p and
q. This quantity can be interpreted as the excess uncertainty (surprisal) we suffer by holding the hypothesis q in a world where event
probabilities actually follow distribution p.

Information gain (i.e., relative entropy, KL divergence) is always non-negative and is zero if and only if p = q. It is often useful to
think of this measure as the ”distance” between distributions, but the KL divergence is not a true distance measure as it is asymmetric
(D(p

∣∣∣∣q) ̸= D(q
∣∣∣∣p)) and does not follow the triangle inequality.
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Mutual information quantifies non-independence
Often we are interested in quantifying how informative an observation is about the state of a system. In other words, how much is
our uncertainty about the state of a system X reduced by the state of an observation Y ? Of course, the observation Y can only carry
information about the system X if the states of X and Y are somehow dependent on each other. The more dependent X and Y are
on each other, the more knowledge of Y specifies the state of X (and vice versa).

The mutual information I(X; Y ) of random variables X and Y quantifies precisely this notion of information as the reduction
in entropy (i.e., uncertainty) of one random variable given observation of another random variable

I(X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X) . [B34]

Mutual information can be equivalently expressed as the divergence from independence of two random variables. When X and Y are
independent random variables, their joint distribution is equal to the product of their marginal distributions. Mutual information is
equivalent to the relative entropy (KL divergence) between the actual joint distribution pXY and the hypothetical product distribution
pXpY that assumes independence.

I(X; Y ) = D(pXY

∣∣∣∣pXpY ) =
∑

i∈X ,j∈Y

p(i, j) log p(i, j)
p(i)p(j) . [B35]

Mutual information can be interpreted in terms of relative entropy as the amount of information we gain by updating our posterior
to reflect some dependence between X and Y from a prior that assumed independence.

Bits as units of information
When the base of the logarithms is 2, entropy and corresponding information measures are measured in bits. For an interpretation of
the bit as a unit of measure, consider the following example (adapted from Cover and Thomas (2006)). Let X be a random variable
that can take some value i ∈ {a, b, c, d} with probability distribution

p =


1/2 : i = a

1/4 : i = b

1/8 : i = c

1/8 : i = d

Suppose X takes a random value and we wish to determine this value with as few binary (“yes-no”) questions of the form, “Is
X = . . . ?” as possible. The most efficient approach is to ask the question whose two outcomes are closest to equiprobable at each
stage. Doing so either identifies the value of X or reduces the space of possible outcomes by about half. In this example, one should
start by asking, “Is X = a?” If yes, X has been determined with 1 question; if no, follow up by asking “Is X = b?”, and so on. X

is a random variable, so the number of binary questions necessary to determine its value is also a random variable. The minimum
expected number of binary questions to determine X in this example is

1
2(1 question) + 1

4(2 questions) + 1
8(3 questions) + 1

8(3 questions) = 1.75 questions , [B36]

which is equal to the entropy of X

H(X) = −
∑
i∈X

p(i) log2 p(i) = −1
2 log2

(1
2

)
− 1

4 log2

(1
4

)
− 1

8 log2

(1
8

)
− 1

8 log2

(1
8

)
= 1.75 bits . [B37]

The minimum expected number of binary questions to determine X is equal to the entropy H(X) for dyadic probability distributions
(i.e., where all probabilities are powers of 2—such as the one in this example) and lies between H(X) and H(X) + 1 in general.

Therefore, bits can be interpreted as the expected number of binary questions necessary to determine the value of a random variable.
Bits of entropy H(p) represent uncertainty in terms of the average number of questions that must be asked to arrive at certainty about
a random variable X that takes values according to p. Bits of relative entropy D(p||q) represent a relative excess in uncertainty in
terms of the expected number of extra questions that must be asked when choosing questions based on some distribution q instead
of the true underlying distribution p. Bits of mutual information I(X; Y ) represent reduction in uncertainty in terms of how many
questions about X are saved on average when given some other observation Y . In all cases, 1 bit refers to 1 binary question that must
be asked on average to arrive at certainty. In other words, 1 bit corresponds to 1 two-fold difference in uncertainty.
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B.2 Natural selection acquires information about the environment

B.2.1 Information gain

In the context of natural selection, the distribution of type frequencies pt can be seen as the population’s hypothesis about which types
are most suited for the current environment. The relative reproductive success of each type provides evidence about the suitability of
each type, and replicator dynamics updates the population’s hypothesis such that highly fit types are given more weight, and poorly fit
types are given less. This process encodes information about the observed fitnesses of types into the population’s type composition. We
can measure how much information is gained in these updates by measuring how much the population’s type frequency distribution
changes during this process. The relative entropy (Kullback-Leibler divergence) between the population’s initial type distribution p0

and its updated distribution pT quantifies the amount of information gain IT for a period of selection of duration T

IT = D(pT
∣∣∣∣p0) =

∑
i

pT
i log pT

i

p0
i

. [B38]

In Bayesian terms, D(pT
∣∣∣∣p0) is a measure of the information gained by revising the population’s hypothesis from the prior distri-

bution p0 to the posterior distribution pt.

B.2.2 Potential information

Relative entropy quantifies how much information is gained in moving from one probability distribution (e.g., a prior) to another (e.g.,
a posterior). We have defined the relative entropy D(pt

∣∣∣∣p0) as the information that a population has gained by natural selection up
to time t (Appendix B.2.1). Here we consider the relative entropy (KL divergence) of some fixed distribution p from the population’s
current frequency distribution pt:

D(p||pt) =
∑

i

pi log pi

pt
i

. [B39]

This relative entropy represents the amount of information that would be gained if the population’s type frequency distribution were
to change from pt to p. We can interpret this quantity as the potential information of the system: the information that is available
to be gained in moving to p from the population’s current state.

Potential information is always decreasing with respect to evolutionarily stable states

We would like to determine the conditions where a population undergoing natural selection can be said to be learning. One way of
formalizing this question is to ask under which conditions will the potential information D(p||pt) decrease? The potential informa-
tion D(p||pt) represents how much learning the population has left to do (i.e., how much information it lacks) from its current state.
If the potential information is decreasing, then the population is making progress in learning ‘about’ the reference distribution p.
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To answer this question, we begin by calculating the rate of change of the potential information:

d

dt
D(p||pt) = d

dt

∑
i

pi log pi

pt
i

[B40]

= d

dt

∑
i

pi log pi − pi log pt
i [B41]

= − d

dt

∑
i

pi log pt
i pi log pi does not depend on t [B42]

= −
∑

i

pi

d
dt

pt
i

pt
i

[B43]

= −
∑

i

pi

pt
i

(
rt

i − ⟨r⟩t
)

pt
i

d

dt
pt

i = pt
i

(
rt

i − ⟨r⟩t
)

is continuous replicator dynamics [B44]

= −
∑

i

pi

(
rt

i − ⟨r⟩t
)

[B45]

= −
∑

i

pir
t
i − pi ⟨r⟩t [B46]

= −
∑

i

pir
t
i +
∑

i

pi ⟨r⟩t [B47]

= ⟨r⟩t −
∑

i

pir
t
i pi’s sum to 1 [B48]

=
∑

i

pt
ir

t
i −
∑

i

pir
t
i ⟨r⟩t =

∑
i

pt
ir

t
i by definition [B49]

=
∑

i

pt
ir

t
i − pir

t
i [B50]

=
∑

i

rt
i

(
pt

i − pi

)
. [B51]

The potential information is decreasing when its rate of change is negative:

d

dt
D(p||pt) =

∑
i

rt
i

(
pt

i − pi

)
≤ 0 ∀ pt . [B52]

When this condition is met, the population can be guaranteed to be learning ‘about’ the reference distribution p.
A type frequency distribution is an evolutionarily stable state (ESS) if those frequencies are restored by selection after a small

disturbance. In other words, a composition p is evolutionarily stable if a small population of invaders with types distributed according
to any other distribution p cannot out-compete the original population or perturb its frequency distribution. That is, a distribution
p is an ESS if ∑

i

piri <
∑

i

piri ∀ p in some neighborhood of p . [B53]

Basically, if the average fitness of a population with distribution p is greater than the average fitness of a population with any other
distribution, then p is an ESS.

We can rearrange the criteria for an ESS, ∑
i

piri <
∑

i

piri [B54]∑
i

piri −
∑

i

piri < 0 [B55]∑
i

ri (pi − pi) < 0 ∀ p in some neighborhood of p , [B56]

and realize that this is the same condition that guarantees that the potential information D(p||pt) is always decreasing (Equation B52).
Therefore, when an evolutionarily stable state p is accessible from the population’s current distribution state p (i.e., the population is
in a basin of attraction for the ESS p), the potential information is guaranteed to be decreasing, and the population is guaranteed to
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be learning ‘about’ the ESS. As the population asymptotically approaches an evolutionarily stable composition (pt → p), it gains all
of the information that can be gained about the current environment (D(p||pt) → 0).

Given an evolutionarily stable state p, the potential information D(p||pt) satisfies the criteria to be a Lyapunov function V for
the replicator dynamic:

V (pt) = D(p||pt) ≥ 0 ∀ pt [B57]
V (pt) = D(p||pt) = 0 iff pt = p [B58]

d

dt
V (pt) = d

dt
D(p||pt) ≤ 0 for every solution of our differential equation [B59]

The existence of such a Lyapunov function is necessary and sufficient to prove the state p to be an asymptotically stable equilibrium.
Therefore, we might say that evolutionary stability is fundamentally characterized in terms of information.

Potential information and coding inefficiency

In information theory, the KL divergence D(q||p) is often used to measure the inefficiency of encoding the state of a system that
follows distribution p using a coding scheme that assumes a state distribution q rather than the true distribution. The meaning of
inefficiency in this interpretation depends on the application. A classical example is encoding values of a random variable using binary
strings. A coding scheme that seeks to use as few bits as possible might assign short binary strings to values that are presumed to
have high probability and longer strings to values that are less common. In this case, the KL divergence D(q||p) measures how many
more bits will be needed on average if such a code is devised under an assumption that the random variable takes values distributed
according to q instead of the optimal distribution p.

In the context of natural selection, the population’s type composition can be seen as encoding which types are most suited for the
environment. Then the potential information D(p||pt) can be interpreted as the inefficiency of fielding a population according to
the type distribution pt in an environment where the evolutionarily stable composition p is in fact (locally) optimal. The inefficiency
of the population’s coding scheme is manifest in its composition being mismatched with the distribution of environmental conditions
to some extent, which results in lower than optimal expected fitness. As selection moves the population toward p, information is
gained and the inefficiency of the population’s encoding is reduced. Understanding how this informational inefficiency changes over
time and how it relates to the growth of the population are central aims of this work.

B.2.3 Natural selection increases mutual information between types and environments
Adaptive genetic information transmitted from one generation to the next provides the organism with some reduction in uncertainty
about the environment. That is, if the genetic sequences that organisms possess are correlated with the environments they experience,
then the genome encodes a representation of the environment that reduces uncertainty about prevailing conditions (Shea 2007). For
example, imagine that you randomly draw a genotype from a population in some environment. If there is a relationship between
environmental states and the genotypes you’re likely to observe in those states, then observing a particular genotype reduces your
uncertainty about the environmental history to some extent. This notion of information is relevant to organisms, which receive
information about how to get by in the current environment from a genotype drawn from the parental gene pool.

Natural selection establishes such a correlation between genetic sequences and environmental conditions. Due to the variation
in traits conferred, not all genes are equally likely to be transmitted to the next generation. The sequences that are associated with
phenotypes that confer high relative fitness in an environment increase in frequency, and an adaptive matching between genotypes
and environments develops. Thus selection results in an accumulation of information about the environmental history. Previous work
has shown that this kind of information has fitness value; that is, the long-term fitness of a lineage is proportional to the amount
of information it has about the environment (Bergstrom and Lachmann 2004, Donaldson-Matasci et al. 2010, Rivoire and Leibler
2011, Rivoire 2016, Hilbert 2017).

Mutual information between genomes and environmental histories quantifies precisely this notion of information as the reduc-
tion in uncertainty (measured as entropy H) derived from the non-independent co-occurrence of genotypes and environmental
conditions. Considering possible genotypes and environmental histories* as random variables G (distributed according to P (G)) and
E (distributed according to P (E)), respectively, the mutual information between genomes and environmental histories I(G; E) is
defined:

I(G; E) = H(E) − H(E|G) . [B60]

Equivalently, this mutual information measures the divergence of genotypes and environmental histories from independence:

I(G; E) = D(P (G, E)||P (G)P (E)) , [B61]

where P (G, E) is the joint probability distribution of G and E.
*Different environmental histories (E) are not to be confused with different conditions (j) within an environment (xt). In terms of the framework studied here, environmental histories can be
interpreted as different sequences of environments {x0, x1, . . . , xT }
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Let time t = 0 be defined as the time at which the current selection conditions begin. Genotypes and environments are assumed
to be independent before the onset of these selection conditions, and their joint distribution at t = 0, P 0(G, E), reflects this initial
independence:

P 0(G, E) = P 0(G)P 0(E) . [B62]

Natural selection establishes a covariance between genotypes and environmental histories due to environment-dependent changes in
type frequencies. Therefore, the mutual information between genotypes and environments established due to a period of selection
T can be quantified as the divergence of the post-selection (i.e., dependent) joint distribution of genotypes and environments from
their pre-selection (i.e., independent) distributions

IT (G; E) = D(P T (G, E)||P 0(G)P 0(E)) . [B63]

McGee and Bergstrom (2022) show that this mutual information can be evaluated as follows:

IT (G; E) = EE

[
D
(
P T (G|e)||P 0(G|e)

)]︸ ︷︷ ︸
average change in each environment

− D
(
P T (G)||P 0(G)

)︸ ︷︷ ︸
change common to all environments

, [B64]

where P T (G|e) is the genotype frequency distribution in a particular environment e at time T , and P T (G) is the overall distribution
of genotypes when populations from all environments under consideration are pooled together. This expression tells us that themutual
information IT (G; E) at time T can be decomposed as the average amount of change in genotype frequencies in each environment
minus the change that is common across environments. Thus adaptive information refers to the amount of change that is specific
to particular environments. Adaptive information accumulates when populations that experience different environmental histories
evolve in distinct, environment-dependent ways. Therefore, adaptive genetic information is accumulated by selection but not by drift,
unbiased random mutation, or migration in expectation (McGee and Bergstrom 2022).

Note that the distribution P t(G|e) is synonymous the with type frequency distribution of a single population that occupies a
particular environmental context, which we denote throughout this work as pt. Then the expression for the mutual information
accumulated through T generations of selection can be rewritten

IT (G; E) = EE

[
D
(
pT

e ||pT
e

)]
− D

(
P T (G)||P 0(G)

)
[B65]

= EE

[
IT

e

]
− D

(
P T (G)||P 0(G)

)
, [B66]

where pt
e and IT

e denote the type frequency distribution and the information gain (as in Equation 2, Appendix B.2.1) of the population
experiencing a counterfactual environmental history e. Therefore, the accumulation mutual information between genotypes and
environmental histories is equal to the average information gain of populations in different environmental contextsminus the genotype
frequency change that is redundant across populations. This relates the information gain due to selection for a single population (the
focus of this work) to the build-up of adaptive information about counterfactual environmental histories. (See McGee and Bergstrom
(2022) for more on the meaning and measurement of this adaptive information.)

Appendix C: Natural Selection as a Learning Process
C.1 Natural selection and Bayesian learning
Suppose that a learner wishes to infer the true state of a system, which may take any one of n possible states. The learner holds
a hypothesis about the state of the system, which is represented by a probability distribution that assigns a weight Pr(hi) to each
alternative. When new evidence E is obtained, the learner updates their prior hypothesis such that alternatives that give relatively
high likelihood Pr(E|hi) to the observed evidence are up-weighted in the posterior hypothesis. Bayesian learning refers to this
process of iteratively updating a hypothesis in light of new evidence using Bayes’ rule:

Pr(hi|E) = Pr(E|hi) Pr(hi)
P (E) . [C67]

In the context of natural selection, each type in the population can be thought of as an alternative strategy for survival, and
the distribution of type frequencies p can be seen as the population’s hypothesis about which types are most suited for the current
environment. Like Bayesian learning, natural selection updates the population’s prior hypothesis in light of new evidence provided
by the fitness landscape. As selection changes the frequencies of types according to their relative fitnesses, the distribution of types
shifts to favor those that have generated organisms well-adapted to the environment. Indeed, there is a formal connection between
Bayesian learning and replicator dynamics. These two update rules share the same form — selection increases the frequency of types
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with high relative fitness in the same way that Bayes’ rule increases the weight of alternatives that give high relative likelihood to the
observed evidence:

Bayesian Learning: Replicator Dynamics:

Pr(ht+1
i |Et) = Pr(Et|ht

i) Pr(ht
i)

P (Et) pt+1
i = Wip

t
i

⟨W ⟩t [C68]

Natural selection can thus be understood as a learning process that “infers” which types are best adapted to the environment, and
a number of recent studies have formalized selection and other evolutionary processes in the framework of Bayesian computations
(Harper 2009b, Shalizi 2009, Campbell 2016, Watson and Szathmáry 2016, Czégel et al. 2020). In fact, Bayesian updating is a
special case of discrete replicator dynamics, where the “fitness” of each alternative is given by its likelihood, and many results for
replicator dynamics can be applied to Bayesian analysis more generally (Shalizi 2009).

C.2 Natural selection as an online learning process
C.2.1 The online learning problem
In the field of computational learning theory, online learning refers to a process of iteratively updating a strategy for responding to
problems given feedback about the quality of past responses. That is, a learner is presented with a sequence of problems to which they
must provide a response (e.g., an answer to a question, a prediction about the state of a system), and the learner holds a strategy that
is used to generate their response to each problem in turn. After providing a response to each problem, the learner receives feedback
about the quality of their response via a loss function that measures the discrepancy between the learner’s response and the optimal
response for that problem. The learner’s goal is to minimize the cumulative loss that they suffer in the long run, which they may
achieve by updating their strategy after each round such that their responses are more accurate in subsequent rounds. The problem
of adapting a strategy for sequential prediction has been studied in a number of fields, including machine learning, game theory, and
information theory.

Here we formalize the online learning problem in the game-theoretic framework of playing repeated games against Nature. In
the following section, we interpret this formalism for the context of an evolving population (Appendix C.2.2). The repeated games
framework is closely related to the prediction with expert advice framework that has been widely studied in computer science.

Consider repeated play of a two-player game in normal form. The game is defined by a matrix G with n rows and m columns
representing the pure strategies available to the learner (row player) and the environment (column player), respectively. A pure strategy
refers to the choice of a specific row or column, while a mixed strategy refers to a distribution over rows or columns. A loss function
ℓ(i, j) defines the outcome associated with the learner’s pure strategy i being paired with the environment player’s pure strategy j. An
optimal pure strategy i given the environment’s choice of pure strategy j receives zero loss (i.e., ℓ(i, j) = 0), whereas a pure strategy
that fares more poorly against the environment’s play receives a correspondingly higher loss. The environment player’s payoffs or
losses are left unspecified.

A play of the game in round t consists of the population player choosing a mixed strategy pt and the column player choosing a
mixed strategy xt. The expected loss of the learner when mixed strategies pt and xt are used is given by

ℓ(pt, xt) = Ei∼pt,j∼xt [ℓ(i, j)] =
∑
i,j

pt
ix

t
jℓ(i, j) . [C69]

Following Freund and Schapire (1999), the loss that the learner suffers in each round is equal to the expected loss of their mixed
strategy. The loss received by the learner is revealed after the selection of mixed strategies in each round of the game, but the
environment player’s strategies and the game matrix as a whole are unknown to the learner. The goal of the learner is to minimize its
cumulative loss

LT =
T∑

t=0

ℓ(pt, xt) =
T∑

t=0

∑
i,j

pt
ix

t
jℓ(i, j) . [C70]

The learnermay achieve this goal by iteratively updating their mixed strategy so as to learn amixed strategy that hasminimal per-round
expected loss.

Depending on the definition of the game G and the environment player’s strategies xt, even the optimal strategy available
to the learner may still incur non-zero expected loss in each round, which results in a cumulative loss that continues to increase
over time. In addition, we will consider the general case where we make no assumptions about the sequence of mixed strategies
chosen by the environment player. In general, the environment may select strategies deterministically, stochastically, arbitrarily, or
even adversarially (i.e., the environment can select xt with knowledge of pt). An adversarial environment can make the learner’s
cumulative loss arbitrarily large by choosing strategies xt that give a worst-case loss for the learner’s choice of pt. For these reasons,
it difficult to evaluate the relative performance of online learning algorithms on the basis of the learner’s cumulative loss alone.
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Instead, online learning algorithms are commonly analyzed in terms of regret, which measures the difference between the cumu-
lative loss of a learner and that of a competing fixed strategy q.

RT
q = LT − LT

q =
T∑

t=0

ℓ(pt, xt) −
T∑

t=0

ℓ(q, xt) . [C71]

In computational learning theory, regret is typically evaluated with respect to the optimal strategy in hindsight

R̃T =
T∑

t=0

ℓ(pt, xt) − min
p̃

T∑
t=0

ℓ(p̃, xt) , [C72]

where the optimal strategy p̃ is defined as the fixed mixed strategy that minimizes the cumulative loss for the sequence of environment
plays observed through round T . In this work, we also evaluate regret with respect to an optimal strategy that is defined in terms of an
evolutionarily stable state, which has particular relevance for the learning problems faced by evolving populations (see Appendix C.3
for more information).

Regret analysis captures the ability of a learning algorithm to arrive at a strategy that does as well as an optimal strategy would in
a given scenario. Thus, the learner’s goal can be restated as seeking to learn a mixed strategy that minimizes regret with respect to an
optimal strategy q. A learning process is said to be no-regret if it updates the learner’s mixed strategy such that their per-round regret
vanishes in the long run, achieving

1
T

RT
q = 1

T

(
LT − LT

q

) T →∞−−−−→ 0 . [C73]

A no-regret learning process is optimal in the sense that it achieves the lowest possible per-round regret, which implies that the
learner arrives at a strategy that has a per-round loss very nearly equal to that of the optimal strategy.

C.2.2 The Population versus Environment game
The repeated play formalism of the online learning problem (described in detail in Appendix C.2.1) can be interpreted as the basis
for a model of natural selection in variable environments.* We consider a game between two players: the population† (acting as the
learner) and the environment. The set of pure strategies available to the population player (i.e., rows of the game matrix) represents
the set of replicator types in the population, and the population’s strategy pt represents the type frequency distribution of the pop-
ulation at time t. The set of pure strategies available to the environment player (i.e., columns of the game matrix) represent a set of
possible environmental conditions that make up the environment. We assume that every individual in the population experiences
an independent environmental condition, as if each individual occupies a separate part (e.g., micro-environment) of the physical
environment. Then the environment player’s mixed strategy xt represents the probability distribution of environmental conditions
that are experienced by individuals in the population. A play of the game in round t can be interpreted as the population assigning a
type to each individual with frequencies pt and the environment assigning a condition to each micro-environment with probabilities
xt.

The outcome of each play of the game is scored according to a game matrix G. Each element of the game matrix Gij gives the
payoff for a type i that experiences an environmental condition j. Each individual of type i that experiences environmental condition
j receives a loss ℓ(i, j). Typically the loss ℓ(i, j) is given by a function that measures the difference between the payoff for the ith
type in the jth condition and the optimal payoff achievable in that condition. For example,

ℓ(i, j) = max
i

Gij − Gij . [C74]

As we will see in Appendix C.2.4, payoffs and losses are closely related to fitness when considering a population player that updates
their strategy according to natural selection in this setting. As in the general online learning setting described above, the loss suffered
by the population player in round t is defined as the expected loss ℓ(pt, xt) =

∑
ij

pt
ix

t
jℓ(i, j), which is equivalent to the mean loss

of all individuals in the population. The goal of the population player is to adapt its mixed strategy (type frequency distribution) pt

in order to minimize its cumulative loss and achieve low regret. As we will see in Appendix C.2.4, the replicator dynamics model of
natural selection is equivalent to an online learning algorithm for precisely this setting.

We take a very expansive view of what constitutes an “environment.” Environmental conditions may represent the abiotic condi-
tions experienced by individuals, the types of other replicators encountered by individuals, or even the identity of other alleles carried
by individuals. Similarly, the environment player may select their sequence of strategies {x0, x1, . . . , xT } according to any process,
including as a function of time, as a function of the population player’s strategy (i.e., as a function of type frequencies), as a stochastic
or random process, as a “pre-programmed” sequence, etc. While the environment may select the frequency distribution of condi-
tions xt with knowledge of the population’s type frequency distribution pt, the association of particular environmental conditions
(micro-environments) to specific individuals is assumed to be random and out of the control of both players. Throughout this work
we consider various environmental contexts of interest as well as the fully general setting where no assumptions are made about the
sequence of environmental condition distributions.

*The Population versus Environment game model is wholly consistent with the models of replicator dynamics in variable environments outlined in Appendix A.2.
†Note that this differs from standard evolutionary game theory where each individual within the population is a separate player.
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C.2.3 The Multiplicative Weights Updating (MWU) algorithm
Online learning problems of this form are common, and a simple yet powerful learning algorithm known as MultiplicativeWeights
Updating (MWU) has been shown to be an effective solution to such problems in computer science, machine learning, economics, and
other fields. Here we highlight the conceptual intuitions underlying this algorithm by going through a loss-optimization derivation
of MWU before stating the MWU update rule.

Derivation of MWU

[This section derives the MWU update rule using the method of Lagrange multipliers, the details of which are not critical for understanding
this work. The logic that sets up the optimization may provide some insights, even if Lagrange optimization is unfamiliar. Readers simply
interested in the definition of MWU can skip to the next section.]

A learner facing an online learning problem seeks a method for adaptively selecting strategies such that their long-term cumulative
loss is minimized. Intuitively, it might seem reasonable for the learner to choose the mixed strategy that would perform the best
against the previously observed plays of the environment—this is known as the Follow the Leader (FTL) algorithm:

pT +1 = min
p′

T∑
t=0

ℓ(p′, xt) = min
p′

T∑
t=0

∑
i

p′
iℓ(i, xt) = min

p′

∑
i

p′
iL

T
i , [C75]

where LT
i is the cumulative expected loss of the pure strategy i. This update rule effectively places all of the weight on the single pure

strategy that has seen the lowest cumulative loss so far. This Follow the Leader algorithm is inherently unstable as all of the weight
can switch from one pure strategy to another from round to round. Furthermore, there is no guarantee that a strategy that performs
well on past observations will continue to do so against future plays of the environment, so a learner using this algorithm can be easily
tricked into adopting strategies with poor long-term loss.

In order to add stability to the mixed strategy updates, we can add a regularization term R(p) to the optimization that generates
the updated mixed strategy, where the regularizer R is some convex function. An appropriately chosen regularizer function can offset
the influence of the loss minimization term by promoting more uniform weight distributions that do not change too quickly. Such
regularization makes the algorithm less vulnerable to short term plays of the environment that might otherwise fool the learner into
adopting strategies with high long-term loss. The resulting update rule is known as the Follow the Regularized Leader (FTRL)
algorithm:

pT +1 = arg min
p′

(∑
i

p′
iL

T
i + 1

η
R(p′)

)
, [C76]

where η ∈ (0, ∞) is a learning rate parameter that modulates the relative emphasis that is given to minimizing loss in hindsight
versus constraining change in each update via the regularization term. When the learning rate η is large, the weights can change
greatly in each update (approximating the un-regularized FTL as η → ∞). When the learning rate is small, the FTRL update favors
the regularization criteria, which typically prevents weight consolidating on a small number of pure strategies in the short-term. In
general, the FTRL algorithm balances minimizing long-term loss against maintaining diversity in the mixed strategy distribution
during the transient of the learning process.

Intuitively, the negative entropy −H(p) =
∑

i
pi log pi is a reasonable choice for the regularization function. First, the negative

entropy is a strongly convex function, which is a requirement of our choice of regularizer function. More importantly, entropy is a
measure of the spread of a distribution that is maximized for the uniform distribution, so the negative entropy is minimized for the
uniform distribution. Therefore, using the negative entropy of the mixed strategy as the regularizer will lead the minimization in the
FTRL update rule to balance loss minimization against maintaining more uniform weight distributions:

pT +1 = arg min
p′

(∑
i

p′
iL

T
i + 1

η
R(p′)

)
[C77]

= arg min
p′

(∑
i

p′
iL

T
i − 1

η
H(p′)

)
[C78]

= arg min
p′

(∑
i

p′
iL

T
i + 1

η

∑
i

p′
i log p′

i

)
. [C79]

We can set out to solve for the distribution p′ that achieves this FTRL update by finding the minimum of this expression. This is
a straightforward optimization problem, because the expression to be minimized is strictly concave and has a unique minimum. We
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solve this optimization using the method of Lagrange multipliers, where we include the constraint that
∑

z
p′

z = 1. We begin by
defining the Lagrange function L (not to be confused with L, which denotes cumulative loss)

L(p′, λ) =

(∑
i

p′L′
i + 1

η

∑
i

p′
i log p′

i

)
+ λ

(
1 −

∑
z

p′
z

)
. [C80]

Set the derivative of the Lagrange function equal to 0 and evaluate the system of equations that includes the contraint

∂L
∂p′

i

= LT
i + 1

η
(1 + log p′

i) − λ = 0 [C81]∑
z

p′
z = 1 . [C82]

Solving for p′
i in terms of λ

LT
i + 1

η
(1 + log p′

i) = λ [C83]

1
η

(1 + log p′
i) = −LT

i + λ [C84]

1 + log p′
i = η(−LT

i + λ) [C85]
log p′

i = −ηLT
i + ηλ − 1 [C86]

p′
i = exp (−ηLT

i + ηλ − 1) . [C87]

Plugging this expression for p′
i into the constraint to solve for λ

∑
z

p′
z = 1 [C88]∑

z

exp (−ηLT
z + ηλ − 1) = 1 [C89]∑

z

exp (−ηLT
z ) exp (ηλ − 1) = 1 [C90]

exp (ηλ − 1)
∑

z

exp (−ηLT
z ) = 1 [C91]

∑
z

exp (−ηLT
z ) = 1

exp (ηλ − 1) [C92]∑
z

exp (−ηLT
z ) = exp (−ηλ + 1) [C93]

log

(∑
z

exp (−ηLT
z )

)
= 1 − ηλ [C94]

log

(∑
z

exp (−ηLT
z )

)
− 1 = −ηλ [C95]

− 1
η

(
log

(∑
z

exp (−ηLT
z )

)
− 1

)
= λ . [C96]

Plugging this expression for λ into the expression we previously found for p′
i in terms of λ (Equation C87) we can ultimately solve
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for p′
i:

p′
i = exp (−ηLT

i + ηλ − 1) [C97]

p′
i = exp

(
−ηLT

i + η

[
− 1

η

(
log

(∑
z

exp (−ηLT
z )

)
− 1

)]
− 1

)
[C98]

p′
i = exp

(
−ηLT

i +

[
−

(
log

(∑
z

exp (−ηLT
z )

)
− 1

)]
− 1

)
[C99]

p′
i = exp

(
−ηLT

i +

[
− log

(∑
z

exp (−ηLT
z )

)
+ 1

]
− 1

)
[C100]

p′
i = exp

(
−ηLT

i − log

(∑
z

exp (−ηLT
z )

)
+ 1 − 1

)
[C101]

p′
i = exp

(
−ηLT

i − log

(∑
z

exp (−ηLT
z )

))
[C102]

p′
i = exp

(
−ηLT

i

)
exp

(
− log

(∑
z

exp (−ηLT
z )

))
[C103]

p′
i =

exp
(
−ηLT

i

)
exp
(
log
(∑

z
exp (−ηLT

z )
)) [C104]

p′
i =

exp
(
−ηLT

i

)∑
z

exp (−ηLT
z )

[C105]

p′
i = e−ηLT

i∑
z

e−ηLT
z

. [C106]

We have found an expression for the mixed strategy distribution p′ that solves the FTRL optimization problem (Equation C79).
Therefore, we find that applying the update pT +1

i = e−ηLT
i /
∑

z
e−ηLT

z for each pure strategy i updates the mixed strategy to a
distribution that minimizes a combination of expected cumulative loss and negative entropy.

This is a useful update rule in and of itself, but we can go a step further to put this update rule in a form that depends only
on the player’s loss in the most recent round, which conveniently does not require tracking cumulative loss. Using the recursion
LT

i = LT −1
i + ℓ(i, xt), we can express this update rule in terms of the most recent single-round losses alone:

pT +1
i = e−ηLT

i∑
z

e−ηLT
z

[C107]

pT +1
i = e−η(LT −1

i
+ℓ(i,xt))∑

z
e−η(LT −1

z +ℓ(z,xt))
[C108]

pT +1
i = e−ηLT −1

i
−ηℓ(i,xt)∑

z
e−ηLT −1

z −ηℓ(z,xt)
[C109]

pT +1
i = e−ηLT −1

i e−ηℓ(i,xt)∑
z

e−ηLT −1
z e−ηℓ(z,xt)

[C110]

pT +1
i =

pt
i

(∑
k

e−ηLT
k

)
e−ηℓ(i,xt)∑

z
pt

z

(∑
k

e−ηLT
k

)
e−ηℓ(z,xt)

using pT +1
i = e−ηLT

i∑
k

e−ηLT
k

=⇒ pT +1
i

(∑
k

e−ηLT
k

)
= e−ηLT

i [C111]

pT +1
i =

pt
i

(∑
k

e−ηLT
k

)
e−ηℓ(i,xt)(∑

k
e−ηLT

k

)∑
z

pt
ze−ηℓ(z,xt)

[C112]

pT +1
i = pt

ie
−ηℓ(i,xt)∑

z
pt

ze−ηℓ(z,xt) . [C113]

Finally, we have an update rule (Equation C113) that implements FTRL with negative entropy regularization.
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The MWU Update Rule

In the previous section, we derived an update rule that implements the Follow the Regularized Leader algorithm with negative entropy
regularization, and in so doing updates the learner’s mixed strategy distribution so as to optimize a potential function of expected
total loss and strategy entropy. This update rule has been repeatedly derived in many contexts and goes by several names, including
MultiplicativeWeights Updating (MWU):

pt+1
i = pt

ie
−ηℓ(i,xt)∑

z
pt

ze−ηℓ(z,xt) . [C114]

This algorithm is no-regret in many contexts and achieves reasonable regret bounds in general. This means that a learner who uses
MWU to update their strategy learns an approximation of an optimal strategy that achieves a cumulative loss that is nearly as low
as that of the optimal strategy. In some settings, such as where the learning rate can be tuned or where the loss function has certain
properties, it can be shown that MWU is an optimal learning process in the sense that no other learning algorithm can possibly
achieve a tighter bound on regret than MWU (Freund and Schapire 1999). In this work, we are particularly interested in the regime
where MWU is equivalent to natural selection (see Appendix C.2.4). Regret bounds for natural selection are given in Appendix D.3.

C.2.4 Natural selection as a fitness-based instance of MWU
In Appendix C.2.2 we establish the online learning problem as the basis for a model of evolution, and in Appendix C.2.3 we derive
the MWU update rule, which is known to be an effective learning process for problems of this kind. Recent work has shown that
discrete-time replicator dynamics is equivalent to an instantiation of the MWU learning process (Chastain et al. 2014, Mehta et al.
2015, Meir and Parkes 2015, Chastain 2017). In this section, we complete the connection between online learning and natural
selection by describing the equivalence of replicator dynamics and MWU and interpreting the loss function and learning rate implicit
in this equivalence.

It is straightforward to recognize that MWU and replicator dynamics* have the same form — MWU increases the weight of
alternatives that have relatively low loss, and selection increases the frequency of types with high relative fitness:

Multiplicative Weights Updating: Replicator Dynamics: [C115]

pt+1
i = pt

ie
−ηℓ(i,xt)∑

z
pt

ze−ηℓ(z,xt) pt+1
i = pt

i ⟨wi⟩t∑
z

pt
z ⟨wz⟩t [C116]

These two update rules are equivalent where the following identity holds

e−ηℓ(i,xt) = ⟨wi⟩t . [C117]

Evaluating this equation further we have

e−ηℓ(i,xt) = ⟨wi⟩t [C118]

log
(

e−ηℓ(i,xt)
)

= log ⟨wi⟩t [C119]

−ηℓ(i, xt) = log ⟨wi⟩t [C120]
ηℓ(i, xt) = − log ⟨wi⟩t . [C121]

At this point, if we let η = 1 then the expected loss of the ith type ought to be equal to the negative log expected relative fitness of
the ith type.

ℓ(i, xt) = − log ⟨wi⟩t , where η = 1 . [C122]

From here we would like to find the loss function ℓ(i, j) for which this equivalence holds. Let us propose that the choice of loss

*Replicator dynamics expressed here in terms of the expected relative fitness ⟨wi⟩t of each type i over all environmental conditions.
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function ℓ(i, j) = − log wij satisfies this equation, which we will now prove.

ℓ(i, xt) = − log ⟨wi⟩t , where η = 1 [C123]∑
j

xt
jℓ(i, j) = − log ⟨wi⟩t defintion of expected type loss ℓ(i, xt) [C124]

∑
j

xt
jℓ(i, j) = − log

(∑
j

xt
jwij

)
defintion of expected type relative fitness ⟨wi⟩t [C125]

∑
j

xt
j (− log wij) = − log

(∑
j

xt
jwij

)
choice of loss function ℓ(i, j) [C126]

∑
j

xt
j (log wij) = log

(∑
j

xt
jwij

)
[C127]

∑
j

xt
j (log (1 − kij)) = log

(∑
j

xt
j(1 − kij)

)
definition of Wrightian selection coefficients wij = 1 − kij [C128]

∑
j

xt
j (log (1 − kij)) = log

(
1 − ⟨ki⟩t

)
[C129]

∑
j

xt
j(−kij) ≈ − ⟨ki⟩t for small kij log (1 − u) ≈ −u for 0 < u ≪ 1 [C130]

− ⟨ki⟩t ≈ − ⟨ki⟩t as was to be shown. [C131]

Therefore, Multiplicative Weights Updating is equivalent to discrete-time replicator dynamics for haploid asexual populations
under the following conditions:

1. Loss function ℓ(i, j) = − log wij .

2. Learning rate η = 1.

3. In the limit of weak selection, where kij ≪ 1 for all i, j (or in the limit of continuously overlapping generations).

Using the definition of relative fitness wij , the loss function ℓ(i, j) = − log wij can be expressed and interpreted in another form.

ℓ(i, j) = − log wij [C132]

= − log Wij

W∗j
[C133]

= log W∗j

Wij
[C134]

= log W∗j − log Wij [C135]
= max

i
(log Wij) − log Wij . [C136]

Thus we see that this loss function measures the difference between the log fitness (growth rate) for the ith type in the jth condition
and the optimal payoff achievable in that condition. This is a sensible way to define the validity of the individual “response” i to the
“context” j in learning-theoretic terms. Moreover, this difference gives the loss of potential fitness that an individual experiences
by having a suboptimal type for the condition they experience, which is meaningful in the context of a population evolving by
natural selection. Identifying log fitness as the payoff compared by the loss function (Equation C74) tells us that the n-by-m matrix
G defining the Population versus Environment game gives the log fitnesses (growth rates) of all n types in all m conditions (i.e,
Gij = log Wij ).

The learning rate η sets the relative emphasis that Multiplicative Weight Updating gives to minimizing loss based on previous
options versus maintaining spread over types as a form of regularization (Equation C76). Learning rates η > 1 react strongly to each
observed round of losses, while learning rates η < 1 put more emphasis on maintaining entropy in the learner’s strategy. The fact that
a learning rate η = 1 is implicit in the equivalence between natural selection and MWU tells us that selection balances maximizing
expected cumulative fitness (minimizing expected fitness loss) and maintaining diversity exactly equally (Chastain et al. 2014).

C.3 Two classes of learning problems for evolving populations
For a population that learns by natural selection, it is useful to distinguish two classes of learning problems that lead to different
conceptions of strategy optimality and corresponding definitions of regret.
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The nature of the learning problem faced by a population depends on the sequence of environments it experiences. A given
distribution of environmental conditions xt can be interpreted as determining a fitness landscape: the set of expected fitnesses for each
type in the population (i.e., the vector Gxt gives the fitness landscape at time t). The central problem for the evolving population can
be seen to be arriving at an equilibrium state that maximizes fitness locally with respect to the current fitness landscape. The dynamics
of selection continually move the population toward an accessible stable state, which decreases potential information and increases
fitness with respect to the present environment. In other words, what selection learns is an evolutionarily stable type composition
for the current conditions. When the makeup of the environment changes the fitness landscape changes as well, the evolutionarily
stable state that represents the population’s learning target may or may not change depending on the particular sequence of changes
to the fitness landscape. A sequence of environments for which the evolutionarily stable state accessible to the population remains
stationary represents a fixed learning problem. On the other hand, many sequences of environments do cause the evolutionarily
stable states to change over time, which we refer to as variable learning problems. These classes of learning problems are defined
formally below.

Definition. A type distributionpxt is an evolutionarily stable state of replicator dynamics with respect to the distribution of environmental
conditions xt if for all distributions q ̸= pxt in a neighborhood of pxt

qTGxt < pT
xt Gxt =⇒

{∑
ij

qix
t
j log Wij <

∑
ij

pxt,ix
t
j log Wij for discrete-time replicator dynamics∑

ij
qix

t
jrij <

∑
ij

pxt,ix
t
jrij for continuous-time replicator dynamics

[C137]

Definition. The basin of attraction of an evolutionarily stable state pxt is the set of all initial conditions fromwhich trajectories of replicator
dynamics approach pxt . Formally, the basin of attraction B(pxt ) is a positively invariant set (i.e., all trajectories starting in B(pxt ) remain
in B(pxt )) that contains pxt and for which there exists a Lyapunov function V (p) that satisfies

V (p) ≥ 0 ∀p ∈ B(pxt ) [C138]
V (p) = 0 iff p = pxt [C139]

d

dt
V (p) < 0 ∀p ∈ B(pxt ) \ p \ denotes “excluding” [C140]

Then, by La Salle’s Invariance Principle, every trajectory starting at p0 ∈ B(pxt ) tends to pxt as t → ∞.

Definition. An evolutionarily stable state p is said to be stationary over a sequence of environments x0, . . . , xT if the equilibrium point
remains constant and the population’s trajectory pt remains within its basin of attraction throughout the sequence. That is,

p = pxt and pt ∈ B(pxt ) ∀ xt ∈ {x0, . . . , xT } . [C141]

Definition. Any sequence of environments x0, . . . , xT for which the population’s initial type distribution p0 is in the basin of attraction of
a stationary evolutionarily stable state p is said to represent a fixed learning problem for the population.

Definition. Any sequence of environments x0, . . . , xT that does not meet the criteria of a fixed learning problem — that is, where the
evolutionarily stable state accessible to the population changes throughout the sequence of environments — is said to represent a variable
learning problem.
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Appendix D: The Cost of Natural Selection
D.1 Mismatch load quantifies the cumulative fitness loss of selection
The genetic load of a population refers to “the extent to which [the population] is impaired by the fact that not all individuals in the
population are of the optimum type” (Crow 1958). A population that includes suboptimal types for the current environment will have
a lower average population fitness than a population that has the optimal composition, and genetic load measures the proportion by
which the population fitness is decreased due to the presence of the inferior types. A number of factors can contribute to the presence
of suboptimal types in a population and thus to the overall genetic load. For example, mutation load refers to the depression in
population fitness due to the occurrence of deleterious mutations, and segregation load refers to a depression in population fitness due
to the production of inferior homozygotes by allele segregation in the context of heterozygote advantage (Crow 1958, Kimura 1960).
The component of load that is the focus of this paper is the substitution load and its generalization, mismatch load : the depression in
population fitness that results from mismatch of types and environmental conditions.

D.1.1 Substitution load
In the following sections, we walk through Haldane’s and Kimura’s definitions of substitution load in terms of Wrightian fitnesses
(i.e., discrete generations) and Malthusian fitness (i.e., continuous growth), respectively (see Appendix A for fitness definitions).

Substitution load for discrete-time replicator dynamics

The basic idea of genetic load was introduced by J.B.S. Haldane (1937). Haldane (1957) was also the first to consider a “cost of
natural selection,” in which he quantified the number of selective deaths that must occur in order to replace one allele with a more fit
one. Haldane (1957) considers a haploid population with discrete generations that undergoes selection in response to a change in the
environment. The result of this change is that one or more types that were previously rare become beneficial. Overall, the population
is less adapted to the new environment, and its reproductive capacity is lowered due to the predominance of types that have poor
viability, fertility, etc. in these conditions. Natural selection gradually improves the composition of the population, but “meanwhile a
number of [selective] deaths, or their equivalents in fertility, have occurred” (Haldane 1957). Haldane sets out to quantify the total
number of “selective deaths” that occur during the process of selection substituting the newly optimal type.

Let the absolute Wrightian fitness of each type i in the new environment be given by Wi.* The fitness of the ith type relative to
the fitness of the optimal type is given by

wi = Wi

W∗
= 1 − ki , [D142]

where ki ∈ [0, 1] is the Wrightian selection coefficient of the ith type, and k∗ = 0 is the selection coefficient of the optimal type. In
other words, 1 − ki individuals of type i survive and reproduce for every one of the optimal type. Therefore the selection coefficient
ki can be interpreted as the per capita number of “selective deaths” of type i. Then the expected number of selective deaths in the
population in single a generation is given by ∑

i

pt
iki . [D143]

Haldane (1957) goes on the evaluate the total number of expected selective deaths accumulated over T generations of selection

T∑
t=0

∑
i

pt
iki . [D144]

Motoo Kimura (1960, 1961) further developed this concept into the more general definition of substitution load. Kimura defined
substitution load as the cumulative difference between a population’s average growth rate and the growth rate of the optimal type over
the course of an allele substitution. Kimura’s definition clarifies that selection and the resulting substitution load need not involve
actual deaths.

While Kimura defined this quantity in terms of continuous growth rates (see the next section), we consider an analogous definition
for discrete generations in this paper. The log fitness log Wi gives the expected instantaneous growth rate of the subpopulation of type
i individuals in a single generation (Appendix A.1.1). The difference between the growth rate of the optimal type and the population’s
average growth rate in a single generation is then given by

log W∗ − ⟨log W ⟩t =
∑

i

pt
i (log W∗ − log Wi) . [D145]

This difference gives the expected depression in single-generation growth that the population experiences due to its mixed composition
relative to a population that consists of only the optimal type. Natural selection will gradually increase the the frequency of the optimal

*Haldane (1957) considered a 2 allele model, but it is straightforward to extend this to n types.
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type in the evolving population, and this difference will decrease over time. Substitution load LT
sub is defined as the total sum difference

between the evolving population’s growth rate and the optimal growth rate over T generations of a gene substitution process in a
constant environment

LT
sub =

T∑
t=0

log W∗ − ⟨log W ⟩t [D146]

=
T∑

t=0

∑
i

pt
i (log W∗ − log Wi) . [D147]

This quantity gives the expected fold difference in long-term growth of the evolving population relative to a population with an
optimal composition, where the ‘fold’ refers to the base of the logarithms. When logarithms to base 2 are used, a substitution load
LT

sub = 1 refers to 1 two-fold reduction in the population’s long term growth relative to the optimum.
Kimura’s substitution load is equivalent to Haldane’s expression for the number of selective deaths in the limit of weak selection

or continuously overlapping generations. To see this, we can work out an expression for the discrete-time definition of substitution
load in terms of Wrightian selection coefficients.

LT
sub =

T∑
t=0

log W∗ − ⟨log W ⟩t [D148]

=
T∑

t=0

∑
i

pt
i (log W∗ − log Wi) [D149]

=
T∑

t=0

∑
i

pt
i

(
log W∗

Wi

)
[D150]

= −
T∑

t=0

∑
i

pt
i

(
log Wi

W∗

)
[D151]

= −
T∑

t=0

∑
i

pt
i (log wi) definition of relative fitness wi [D152]

= −
T∑

t=0

∑
i

pt
i (log (1 − ki)) [D153]

≈ −
T∑

t=0

∑
i

pt
i (−ki) for small ki log (1 − u) ≈ −u for 0 < u ≪ 1 [D154]

=
T∑

t=0

∑
i

pt
iki . [D155]

The final line is equal to the number of selective deaths inHaldane’s model (EquationD144), and thusHaldane’s quantity is equivalent
to discrete-time substitution load in the limit of weak selection (small ki for all i). The connection between the discrete generations
and continuous growth definitions of substitution load can be seen in the following section.

Substitution load for continuous-time replicator dynamics

Now we turn to Kimura’s definition of substitution load for haploid populations with overlapping generations in a constant, homoge-
neous environment (Kimura 1960, 1961). Consider a population that consists of multiple types*, where pt

i and ri give the frequency
and Malthusian fitness (exponential growth rate) of the i-th type at time t, respectively. Suppose the optimal type, which confers the
maximum growth rate r∗ = maxi ri, has an initial frequency 0 < p0

∗ < 1. The difference between the growth rate of the optimal
type and that of the ith type is given by the Malthusian selection coefficient

si = r∗ − ri . [D156]

This fitness difference can be thought of as the growth penalty that the population receives for each individual that is of the ith type
rather than the optimal type for the environment. Then the population’s expected fitness reduction due to the presence of inferior
types at a given time t is the frequency-weighted average of these fitness differences∑

i

pt
i (r∗ − ri) =

∑
i

pt
isi . [D157]

*We extend the 2 allele model from Kimura (1960, 1961) to n types.
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This expected fitness reduction integrated over a period of selection of duration T defines the substitution load

LT
sub =

∫ T

0

∑
i

pt
i (r∗ − ri) dt . [D158]

Substitution load can be equivalently expressed as the cumulative difference between the optimal fitness and the population’s mean
fitness ⟨r⟩t =

∑
i
pt

iri

LT
sub =

∫ T

0
r∗ − ⟨r⟩t dt , [D159]

or as the integral of the population’s mean selection coefficient ⟨s⟩t =
∑

i
pt

isi

LT
sub =

∫ T

0
⟨s⟩t dt . [D160]

We can evaluate this integral to obtain a closed-form expression for substitution load. Evaluating this integral with respect to
time is not straight-forward, but we can make use of the definition of continuous-time replicator dynamics to change the integration
variable to one that is simpler to work with. Recall the continuous-time replicator dynamics that governs how type frequencies change
over time

dpi

dt
= pt

i(ri − ⟨r⟩t) . Equation A27 [D161]

We can rearrange this differential equation to find an expression for dt in terms of the frequency and fitness variables.

dt = dpi

pt
i(ri − ⟨r⟩t)

. [D162]

If we consider the replicator dynamics for the optimal allele in particular, the expression we obtain for dt includes in the denominator
a term that appears in the substitution load integral, which will prove useful for simplifying the integral

dt = dp∗

pt
∗(r∗ − ⟨r⟩t)

= dp∗

pt
∗ ⟨s⟩t . [D163]

Now we can use this expression for dt to change the integration variable and evaluate the simplified integral

LT
sub =

∫ T

0
⟨s⟩t dt [D164]

=
∫ pT

∗

p0
∗

⟨s⟩t dp∗

p∗ ⟨s⟩t using Equation D163 [D165]

=
∫ pT

∗

p0
∗

⟨s⟩t

⟨s⟩t

dp∗

p∗
[D166]

=
∫ pT

∗

p0
∗

dp∗

p∗
[D167]

= log p∗

∣∣∣pT
∗

p0
∗

[D168]

= log pT
∗ − log p0

∗ [D169]

= log
(

pT
∗

p0
∗

)
. [D170]

Here we see that the substitution load after a period of selection of duration T is a function of the pre- and post-selection frequencies
of the optimal allele. In the long run, as the population approaches fixation for the optimal allele, the total substitution load converges
to

lim
T →∞

LT
sub =

∫ ∞

0
⟨s⟩t dt = ln

(
1
p0

∗

)
= − ln p0

∗ , [D171]

a value that depends only on the initial frequency of the optimal allele. Interestingly, the total substitution load for a complete allele
substitution does not depend on the strength of selection. The relative fitness advantage of the optimal allele over other alleles in the
population will modulate the time it takes for selection to fix this allele, but the total load will be the same in any case.

McGee et al. bioRχiv | 33

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


D.1.2 Mismatch load
The classical definitions of substitution load introduced by Haldane (1957) and Kimura (1960, 1961) consider a model of evolution
in a homogeneous and constant environment. In such a case, there is a strictly optimal type with maximal fitness for the given
environment, and the result of natural selection is a sweep where the optimal type substitutes all others. Substitution load measures
the cumulative loss of fitness associated with selection completing this substitution gradually. This is a useful thing to measure, but
this basic setting is restrictive.

We would like to extend this notion of load to more general settings with heterogeneous and time-varying environments. In
Appendix A.2 and Appendix C.2.2 we present a model of evolution in variable environments. The environment is considered to
be constituted by a set of distinct conditions. Each individual in the population experiences an independent micro-environment
characterized by particular condition, and the fitness Wij (or rij for continuous dynamics) of each individual depends both on its
type i and on the environmental condition j that it experiences. The core concept that substitution load measures is the accumulation
of fitness losses due to the presence of types that are poorly suited for the conditions they experience. In a heterogeneous environment,
different environmental conditions may favor different types. In principle, overall fitness is maximized if every individual possesses the
type that is optimal for the specific environmental condition that they experience. However, we assume that types are distributed over
conditions randomly, so some type-condition mismatch is inevitable. We introduce the concept of mismatch load, which quantifies
the cumulative loss of potential fitness due to the mismatch of types and environmental conditions.

Consider an environmental condition j. An individual of type i that experiences this condition has fitness Wij , while the fitness
of the type that is optimal for this condition is denoted by W∗j = maxi Wij . The amount of potential fitness that an individual
misses out on by having a suboptimal type i in condition j is given by the difference

log W∗j − log Wij . [D172]

The expected amount of fitness loss incurred by the population due to type-condition mismatch over the distribution of types pt and
distribution of conditions xt in generation t is given by∑

ij

pt
ix

t
j (log W∗j − log Wij) . [D173]

Mismatch load LT measures the cumulative loss of fitness due to type-condition mismatch over T generations

LT =
T∑

t=0

∑
i,j

pt
ix

t
j (log W∗j − log Wij) [D174]

=
T∑

t=0

(
⟨log W∗⟩t − ⟨log W ⟩t

)
. [D175]

Mismatch load is equivalent to substitution load (Equation D147) when there is only one environmental condition (i.e., m = 1,
xt is a point distribution). Like substitution load, mismatch load quantifies the fold reduction in total growth that an evolving
population experiences due to having a composition that is not optimally matched to the environmental conditions. In the case of
a gene substitution in a constant environment, substitution load converges on a finite value as selection approaches fixation of the
optimal type. However, when the environment is heterogeneous there may not be a single type that is universally optimal in all
conditions. In such a case, there is no type composition that can be expected to achieve zero mismatch given random associations
of types with conditions. Therefore, mismatch load does not necessarily converge on a finite value and may accrue even for the type
composition that gives the optimal expected fitness over all types and conditions.

Mismatch load is equivalent to cumulative expected fitness loss

In Appendix C.2.4 we show that replicator dynamics are equivalent to an instantiation of the MWU online learning algorithm
characterized by the learning rate η = 1 and fitness-based loss function

ℓ(i, j) = − log wij = log W∗j − log Wij . [D176]

This function defines the loss that an individual of type i incurs in environmental condition j. In biological terms, this loss function
gives the loss of potential fitness that an individual of type i experiences due to having a suboptimal type in condition j. The expected
loss of all type i individuals taken over the distribution of environmental conditions xt at time t is given by

ℓ(i, xt) =
∑

j

xt
j (log W∗j − log Wij) . [D177]
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The expected loss of fitness experienced by the overall population in generation t (i.e., the expected loss taken by the population player
in round t of the Population versus Environment game) is given by

ℓ(pt, xt) =
∑

j

pt
ix

t
j (log W∗j − log Wij) . [D178]

Then the cumulative expected loss of the population summed over T generations (i.e., T rounds of the PvE game) is given by

T∑
t=0

ℓ(pt, xt) =
T∑

t=0

∑
j

pt
ix

t
j (log W∗j − log Wij) . [D179]

We recognize this quantity as being identical to the definition of mismatch load (Equation 8, Equation D175, Appendix D.1.2)

T∑
t=0

ℓ(pt, xt) = LT . [D180]

This connection reinforces the meaning of mismatch load and makes intuitive sense. Natural selection is equivalent to the MWU
online learning algorithm when the learning-theoretic loss function is defined as the fitness loss each individual incurs given the
environmental conditions they experience. The more type-condition mismatch occurs, the more loss the population is expected to
incur and accrue, both in terms of learning-theoretic loss and long-term fitness loss.

D.2 Regret quantifies the cost of selection
In Appendix C.2 we introduced the concept of regret in the context of online learning. Regret is used in learning theory to evaluate
the performance of a learning process by comparing the responses of a learner to the responses produced by a fixed reference strategy.
Responses are typically scored using a loss function that quantifies the validity of a response relative to the best response in a given
situation. When the reference strategy is taken to be optimal, regret represents the cost of the learning process: the excess loss a
learner suffers by having to learn an appropriate response as opposed to knowing the solution all along.

In this section, we show the connection between regret and load and establish two definitions of regret in the context of an evolving
population.

D.2.1 Regret quantifies relative mismatch load
In this section, we evaluate the definition of regret that applies to natural selection as a learning process. In general, regret is defined
as the difference between the cumulative expected loss of the learner and the cumulative expected loss of a fixed reference strategy q

(Appendix C.2.1).

RT
q =

T∑
t=0

ℓ(pt, xt) −
T∑

t=0

ℓ(q, xt) [D181]

=
T∑

t=0

∑
ij

pt
ix

t
jℓ(i, j) −

T∑
t=0

∑
ij

qix
t
jℓ(i, j) . [D182]

If we plug in the loss function ℓ(i, j) = log W∗j − log Wij that is implicated in using natural selection as the learning process
(Appendix C.2.4) we have

RT
q =

T∑
t=0

∑
ij

pt
ix

t
jℓ(i, j) −

T∑
t=0

∑
ij

qix
t
jℓ(i, j) [D183]

=
T∑

t=0

∑
ij

pt
ix

t
j (log W∗j − log Wij)︸ ︷︷ ︸

mismatch load LT

−
T∑

t=0

∑
ij

qix
t
j (log W∗j − log Wij) . [D184]

In Appendix D.1.2 we show that the cumulative loss of natural selection is equivalent to the definition of mismatch load (Equation 8,
EquationD175, AppendixD.1.2). The second term has the same form, but is calculated with respect to the fixed reference distribution
q. Therefore we can interpret the regret of selection as the difference between the evolving population’s mismatch load and the
mismatch load experienced by the reference type composition q

RT
q = LT − LT

q . [D185]
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Thus regret represents a measure of relative mismatch load. If the reference distribution q is taken to be an optimal type compo-
sition in some sense, then regret measures the amount by which the mismatch load experienced by the evolving population exceeds
the mismatch load it could have achieved if it adopted the optimal fixed composition from the beginning. This is a rigorous measure
of the cost of the selection process that quantifies how much loss of long-term fitness the population incurs by gradually evolving
as opposed to enjoying an optimally adapted composition from the beginning. In this work we consider the regret of selection with
respect to two alternative definitions of fixed optimal compositions; see Appendix D.2.3 for more details.

D.2.2 Regret is equivalent to relative lineage fitness
We have shown that regret is a measure of relative mismatch load in the context of natural selection, and thus regret quantifies
the amount of cumulative fitness loss an evolving population experiences beyond that of some reference composition. The excess
fitness loss that corresponds to regret causes the evolving population to grow more slowly than a hypothetical population that has the
reference composition all along. As such, we can interpret the regret as the cumulative fold difference in expected growth between a
hypothetical population using the reference strategy q and the evolving population using pt:

RT
q =

T∑
t=0

∑
ij

pt
ix

t
jℓ(i, j) −

T∑
t=0

∑
ij

qix
t
jℓ(i, j) [D186]

=
T∑

t=0

∑
ij

pt
ix

t
j (log W∗j − log Wij) − qix

t
j (log W∗j − log Wij) [D187]

=
T∑

t=0

∑
ij

pt
ix

t
j log W∗j − pt

ix
t
j log Wij − qix

t
j log W∗j − qix

t
j log Wij [D188]

=
T∑

t=0

∑
ij

qix
t
j log Wij − pt

ix
t
j log Wij [using

∑
ij

pt
ix

t
j log W∗j =

∑
ij

qix
t
j log W∗j =

∑
j

xt
j log W∗j]

=
T∑

t=0

∑
ij

qix
t
j log Wij︸ ︷︷ ︸

cum. expected fold growth of q

−
T∑

t=0

∑
ij

pt
ix

t
j log Wij︸ ︷︷ ︸

cum. expected fold growth of pt

. [D189]

If we consider a lineage to be the collection of individuals derived from an initial population, regret can be equivalently expressed
in terms of the population’s total expected lineage size relative to the size of the reference lineage with composition q:

RT
q =

T∑
t=0

∑
ij

qix
t
j log Wij︸ ︷︷ ︸

cum. expected fold growth of q

−
T∑

t=0

∑
ij

pt
ix

t
j log Wij︸ ︷︷ ︸

cum. expected fold growth of pt

[D190]

=
T∑

t=0

∑
ij

log W
qixt

j

ij −
T∑

t=0

∑
ij

log W
pt

ixt
j

ij [D191]

=
T∑

t=0

log

(∏
ij

W
qixt

j

ij

)
−

T∑
t=0

log

(∏
ij

W
pt

ixt
j

ij

)
[D192]

= log

(
T∏

t=0

∏
ij

W
qixt

j

ij

)
− log

(
T∏

t=0

∏
ij

W
pt

ixt
j

ij

)
. [D193]

Here we recognize
∏

ij
W

qixt
j

ij in Equation D192 as the geometric mean fitness over composition q and environment xt. Then

the quantity
∏T

t=0

∏
ij

W
qixt

j

ij in Equation D193 gives the total expected geometric growth of a lineage with composition q over
T generations. Therefore, we can see that regret can be re-expressed as the difference in the log (absolute) growth of the reference
population with composition q and that of the evolving population using pt.

If we let the reproductive output of a lineage be denoted as

ΓT =
T∏

t=0

∏
ij

W
pt

ixt
j

ij , [D194]
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then we can simplify the above expression for regret:

RT
q = log

(
T∏

t=0

∏
ij

W
qixt

j

ij

)
− log

(
T∏

t=0

∏
ij

W
pt

ixt
j

ij

)
[D195]

= log
(
ΓT

q

)
− log

(
ΓT
)

[D196]

= log
(

ΓT
q

ΓT

)
[D197]

= − log
(

ΓT

ΓT
q

)
. [D198]

Here we see that regret can be equivalently expressed as the negative log ratio of the population’s total lineage size ΓT to the size of
the reference lineage ΓT

q with fixed composition q.
We may choose to consider the reference lineage that has the optimal cumulative growth ΓT for a particular sequence of envi-

ronments (two notions of optimality are considered in Appendix D.2.3). Then, just as relative fitness can refer to the short-term
reproductive output of a type relative to the maximum output of other types, we can interpret the ratio ΓT /ΓT as the relative lineage
fitness: the cumulative growth of the evolving lineage relative to that of the optimal lineage for the given sequence of environments.
In this case, regret is equal to the negative log relative lineage fitness, and minimizing regret coincides with maximizing relative
lineage fitness.

D.2.3 ESS regret and empirical regret
Regret measures the performance of a learning process in terms of the cumulative loss of the learner’s strategies relative to that of
a fixed reference strategy. Typically the reference strategy is taken to be a strategy that is optimal in some sense. For a population
that learns by natural selection, it is useful to distinguish two classes of learning problems that lead to different definitions of strategy
optimality and thus regret.

ESS regret measures the cost of selection with respect to fixed learning problems

First we consider a definition of regret that pertains to a population that evolves by natural selection in response to a fixed learning
problem (Appendix C.3). In this context, selection moves the population toward a stationary evolutionarily stable state (ESS). By
definition, the evolutionarily stable state is an local optima where the population has higher expected fitness than all other neighboring
type frequency distributions for the given environment (Maynard Smith 1982). Natural selection is a process by which the population
learns this optimal composition. To evaluate the cost of natural selection as a learning process in this setting, it is natural to measure
how the cumulative fitness loss of the evolving population compares to the cumulative fitness loss that would have have been achieved
if the population used the optimal ESS composition all along in the same sequence of environments. This measures defines what we
refer to as the ESS regret, or simply regret in the paper.

Definition. For a sequence of environments x0, . . . , xT that constitutes a fixed learning problemwith a stationary evolutionarily stable state
p, the regret of a learning process that generates a sequence of type frequency distributions p0, . . . , pT measured with respect to p is referred to
as the ESS regret

R̄T =
T∑

t=0

ℓ(pt, xt) − ℓ(p, xt) , [D199]

where the notation R̄T is used as a shorthand for RT
p̄ for typesetting clarity.

Empirical regret measures the cost of selection in generalized settings

ESS regret is a natural measure that captures the cost of selection for the core problem of interest for evolving populations—finding
evolutionarily stable states—however it is only applicable to fixed learning problems characterized by stationary evolutionarily stable
states. In general, a population may face a sequence of environments for which the accessible evolutionarily stable state shifts over
time. In addition, it may not always be reasonable to assume that the evolutionarily stable state is known and usable as a reference
distribution for the measurement of regret. For example, an experimentalist may not have sufficient knowledge of the empirical
Population versus Environment game they are studying to be able to identify the stable state(s) that characterize the learning problem
faced by their population.

In computational learning theory, regret is conventionally measured with respect to the fixed strategy that would have had the
minimum load possible against the observed sequence of environments in hindsight.
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Definition. For any sequence of environments x0, . . . , xT , the regret of a learning process that generates a sequence of type frequency distri-
butions p0, . . . , pT measured with respect to the fixed strategy p̃T that gives the minimum loss over the sequence of environments observed in
hindsight is referred to as the empirical regret

R̃T =
T∑

t=0

ℓ(pt, xt) − ℓ(p̃T , xt) , [D200]

where the empirically optimal strategy p̃T is defined as

p̃T = arg min
q

T∑
t=0

ℓ(q, xt) , [D201]

and where the notation R̃T is used as a shorthand for RT
p̃T for typesetting clarity.

This version of regret is defined solely with respect to the empirical sequence of environments that is observed by the learner and
does not rely on any defining characteristics of the sequence of environments or the learning process itself. Therefore this definition of
regret is fully general and can be used to measure the cost of any learning process in any online learning setting. Given the generality
of this definition, bounds that are established for the empirical regret hold for all games and for all possible environmental sequences
and therefore represent worst-case regret guarantees for a learning process.

D.3 Regret bounds for natural selection
Now that we have established regret as a meaningful measure of the cost of a learning process, we would like to establish bounds on
the cost of selection. Following in the footsteps of foundational works in online learning theory (Kivinen and Warmuth 1995, Freund
and Schapire 1999, Cesa-Bianchi and Lugosi 2006), our basic method for deriving bounds will be a kind of amortized analysis that
tracks the progression of the learning process using a potential function. We will consider some potential function of frequency
vectors ϕ(p) that is assumed to be non-negative and bounded from above

ϕ(p) ≥ 0 ∀p [D202]
ϕ(p) ≤ ϕ0 ∀p . [D203]

The difference in potential ϕ(pt) − ϕ(pt+1) (or − d
dt

ϕ(pt) for a continuous process) is one way of describing the progress made by
the learning process at time t. If we can prove that

ℓ(pt, xt) − ℓ(q, xt) ≤ ϕ(pt) − ϕ(pt+1) [D204]

for all possible updates made by the learning process, then by summing the progression over time we will obtain

RT
q ≤ ϕ(p0) − ϕ(pT +1) ≤ ϕ0 . [D205]

In other words, if the instantaneous regret is bounded by the progress in that step, and the total amount of progress possible is
bounded, then we obtain a bound for the total regret.

The particular potential function that we will use in this analysis is the aptly named potential information

ϕ(pt) = D(q||pt) . [D206]

The potential information is defined as the KL divergence of a reference distribution q from the learner’s current distribution pt,
which can be interpreted as the amount of information the learner stands to gain by updating to the distribution q. This choice of
potential function is not arbitrary but rather follows from the information geometry that underlies the dynamics of selection. The
potential information is the dynamical potential for which selection is a gradient flow—the surface upon which selection moves the
population along the steepest path (Harper 2009a, Harper and Fryer 2015). The tight connection between potential information and
regret that will be developed in the following sections reinforces the fundamental role of information in understanding the dynamics
and performance of natural selection.

The following sections work through the proof method outlined above to establish regret bounds for replicator dynamics.

D.3.1 Regret bound for fixed learning problems
First we consider a population evolving in a sequence of environments characterized by a stationary evolutionarily stable state (i.e.,
“fixed learning problems”). In this context, we can establish tight, finite, and converging upper and lower bounds on regret, as antic-
ipated by Kimura. We do so first for continuous replicator dynamics, where dynamical and geometrical intuitions can be developed
most naturally, before proving the analogous bounds for discrete replicator dynamics that are the focus of the paper.
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Continuous-time replicator dynamics

The main result of this section is the following theorem, which places an upper bound on the total regret of continuous-time replicator
dynamics with respect to a stationary evolutionarily stable state.

Theorem D1. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT such that the popu-
lation’s initial type distribution p0 is in the basin of attraction of an evolutionary stable state p that remains stationary for all t ∈ [0, T ],
the total regret R̄T with respect to p of the trajectory of type distributions p0, . . . , pT generated by continuous-time replicator dynamics is
bounded from above by the initial potential information

R̄T ≤ D(p||p0) ∀ T , [D207]

with equality as T → ∞

lim
T →∞

R̄T = D(p||p0) . [D208]

The proof of this theorem follows the logic outlined above (Equation D202 - Equation D205). First we relate the instantaneous
regret to the instantaneous change in potential information. Then we establish the potential information D(p||pt) as a non-negative
and bounded potential function. The proof then follows from these propositions.

We begin by deriving a fitness-based expression for the change in potential information under replicator dynamics. This result
will be handy for later steps.

Lemma D1. Let pt be the type frequency distribution of a population that evolves according to continuous-time replicator dynamics across
a distribution of environmental conditions xt at time t. Then the derivative of the potential information between pt and an arbitrary type
frequency distribution q can be expressed

d

dt
D(q||pt) =

∑
ij

(
pt

i − qi

)
xt

jrij ,

where rij is the growth rate of type i in environmental condition j.

Proof.

d

dt
D(q||pt) = d

dt

∑
i

qi log qi

pt
i

definition of KL divergence [D209]

= d

dt

∑
i

(
qi log qi − qi log pt

i

)
[D210]

= −
∑

i

qi
1
pt

i

dpt
i

dt
taking the derivative, qi log qi does not depend on t [D211]

= −
∑

i

qi

pt
i

(
⟨ri⟩t − ⟨r⟩t

)
pt

i

dpt
i

dt
= pt

i

(
⟨ri⟩t − ⟨r⟩t

)
is the continuous replicator [D212]

= −
∑

i

qi

(
⟨ri⟩t − ⟨r⟩t

)
[D213]

= −
∑

i

(
qi ⟨ri⟩t − qi ⟨r⟩t

)
[D214]

=
∑

i

qi ⟨r⟩t −
∑

i

qi ⟨ri⟩t [D215]

= ⟨r⟩t −
∑

i

qi ⟨ri⟩t [D216]

=
∑

i

pt
i ⟨ri⟩t −

∑
i

qi ⟨ri⟩t definition of ⟨r⟩t [D217]

=
∑

i

(
pt

i − qi

)
⟨ri⟩t [D218]

=
∑

ij

(
pt

i − qi

)
xt

jrij definition of ⟨ri⟩t [D219]
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Proposition D1. Let pt be the type frequency distribution of a population that evolves according to continuous-time replicator dynamics
across a distribution of environmental conditions xt at time t. Then the derivative of the potential information between pt and an arbitrary
type frequency distribution q can be expressed

d

dt
D(q||pt) = −

(
ℓ(pt, xt) − ℓ(q, xt)

)
,

where
(
ℓ(pt, xt) − ℓ(q, xt)

)
is the instantaneous regret with respect to q.

Proof. We derive the following expression for the instantaneous regret in terms of fitness:

ℓ(pt, xt) − ℓ(q, xt) =
∑

ij

pt
ix

t
jℓ(i, j) −

∑
ij

qix
t
jℓ(i, j) definition of expected loss [D220]

=
∑

ij

pt
ix

t
j (r∗j − rij) −

∑
ij

qix
t
j (r∗j − rij) definition of loss function [D221]

=
∑

ij

(
pt

ix
t
jr∗j − pt

ix
t
jrij

)
−
∑

ij

(
qix

t
jr∗j − qix

t
jrij

)
[D222]

=
∑

ij

pt
ix

t
jr∗j −

∑
ij

pt
ix

t
jrij −

∑
ij

qix
t
jr∗j +

∑
ij

qix
t
jrij [D223]

=
∑

j

xt
jr∗j −

∑
ij

pt
ix

t
jrij −

∑
j

xt
jr∗j +

∑
ij

qix
t
jrij r∗j does not depend on i [D224]

= −
∑

ij

pt
ix

t
jrij +

∑
ij

qix
t
jrij [D225]

=
∑

ij

(
qi − pt

i

)
xt

jrij [D226]

ℓ(pt, xt) − ℓ(q, xt) = −
∑

ij

(
pt

i − qi

)
xt

jrij . [D227]

This expression for instantaneous regret is equal to the negation of the expression for the derivative of potential information that was
derived as Lemma D1. Therefore we have that

d

dt
D(q||pt) =

∑
ij

(
pt

i − qi

)
xt

jrij = −
(
ℓ(pt, xt) − ℓ(q, xt)

)
, using Lemma D1 [D228]

as was to be shown.

PropositionD2. Ifp is a stationary evolutionarily stable state, then the potential informationD(p||pt) is a Lyapunov function that satisfies
for all pt generated by continuous-time replicator dynamics in a neighborhood Q of p

a) D(p||pt) > 0 ∀ pt ∈ Q \ p \ denotes “excluding” [D229]
b) D(p||pt) = 0 iff pt = p [D230]

c) d

dt
D(p||pt) ≤ 0 ∀ pt ∈ Q , [D231]

and p is an asymptotically stable equilibrium point of the system at time t.

Proof. Conditions (a) and (b) follow, respectively, from the facts that KL divergence is always non-negative and is equal to zero if and
only if the two distributions are equal (Cover and Thomas 2006). To prove condition (c) we observe that pt is in the neighborhood
of an evolutionarily stable state p by the premise of the proposition and the definition of a stationary ESS, and thus we have∑

ij

pt
ix

t
jrij ≤

∑
ij

pix
t
jrij definition of evolutionarily stable state [D232]

∑
ij

pt
ix

t
jrij −

∑
ij

pix
t
jrij ≤ 0 [D233]

∑
ij

(
pt

i − pi

)
xt

jrij ≤ 0 [D234]

d

dt
D(p||pt) ≤ 0 , using Lemma D1 [D235]

as was to be shown. Therefore the potential information D(p||pt) satisfies the conditions of a Lyapunov function for the continuous-
time replicator dynamics, the existence of which implies that p is an asymptotically stable equilibrium point by the Lyapunov Asymptotic
Stability Theorem.
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Corollary D2.1. If p is a stationary evolutionarily stable state, then the potential information D(p||pt) is bounded from above by its initial
value

D(p||pt) ≤ D(p||p0) . using Proposition D2c [D236]

Corollary D2.2. If p is a stationary evolutionarily stable state, then its basin of attraction B(p) is the largest positively invariant set for
which d

dt
D(p||p) ≤ 0 under continuous-time replicator dynamics for all p ∈ B(p).

Proof ofTheoremD1: Proposition D1 relates the instantaneous change in potential information to the instantaneous regret. Consid-
ering the regret with respect to a stationary evolutionarily stable state p, we have that

−
(
ℓ(pt, xt) − ℓ(p, xt)

)
= d

dt
D(p||pt) . using Proposition D1 [D237]

Integrating over a period of selection of duration T we obtain

−
∫ T

0

(
ℓ(pt, xt) − ℓ(p, xt)

)
dt =

∫ T

0

d

dt
D(p||pt)dt [D238]

−
(
LT − LT

p

) ∣∣T
0

= D(p||pt)
∣∣T
0

[D239]

−R̄T = D(p||pt)
∣∣T
0

definition of R
T [D240]

−R̄T = D(p||pT ) − D(p||p0) [D241]
R̄T = D(p||p0) − D(p||pT ) [D242]
R̄T ≤ D(p||p0) , KL divergence is always non-negative, so D(p||pT ) ≥ 0 [D243]

which proves that the initial potential information is an upper bound on the total regret. The stationary evolutionarily stable state p

is an asymptotically stable equilibrium point, and the population’s initial type distribution is within its basin of attraction as stated in
the premise of the theorem. Therefore, pT → p as T → ∞, and we have that

lim
T →∞

R̄T = lim
T →∞

(
D(p||p0) − D(p||pT )

)
[D244]

lim
T →∞

R̄T = D(p||p0) − D(p||p) [D245]

lim
T →∞

R̄T = D(p||p0) , KL divergence is zero for equal distributions [D246]

which proves that the upper bound is tight, as the total regret converges on the initial potential information as T → ∞.

Discrete-time replicator dynamics

The main result of this section is the following theorem, which places an upper bound on the total regret of discrete-time replicator
dynamics with respect to a stationary evolutionarily stable state.

Theorem1. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT such that the population’s
initial type distribution p0 is in the basin of attraction of an evolutionary stable state p that remains stationary for all t ∈ [0, T ], the total
regret R̄T with respect to p of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics is bounded from
above by the initial potential information

R̄T ≤ D(p||p0) + O(
〈
k2〉t=0) ∀ T , [D247]

with equality as T → ∞

lim
T →∞

R̄T = D(p||p0) + O(
〈
k2〉t=0) . [D248]

where kij is the Wrightian selection coefficient of type i in state j (Appendix A.1.1) and
〈
k2〉t=0 =

∑
i,j

p0
i x0

j k2
ij is the mean squared

selection coefficient across types and conditions at time t = 0.

This result is nearly identical to the corresponding bound for continuous-time replicator dynamics given in Theorem D1, save for a
“gap” term related to the strength of selection. This “gap” can be interpreted as a small amount of additional regret that may be incurred
due to imprecisions in discrete replicator dynamics’ approximation of the continuous path of convergence to the evolutionarily stable
state. When the strength is selection is high, discrete updates may carry the population further in tangential directions, and the
expected imprecision of the discrete-time trajectory is greater. In the limit of weak selection, where most individuals have similar
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relative fitnesses and thus the selection coefficients kij are small, this imprecision is negligible and the discrete-time bound approaches
equality with that of continuous-time replicator dynamics.

The proof of this theorem proceeds similarly to the proof of the bound for continuous replicator dynamics in the previous sec-
tion. First we relate the instantaneous regret to the instantaneous change in potential information. Then we establish the potential
information D(p||pt) as a non-negative and bounded potential function. The proof then follows from these propositions.

Discrete-time replicator dynamics are a special case of the Multiplicative Weight Updating (MWU) algorithm where the learning
rate η = 1 and a particular fitness-based loss function is used (Appendix C.2.4). We begin by working through intermediate results for
the general class of MWU algorithms where the learning rate η and the loss function ℓ(i, j) are left unspecified. This provides some
insights about how the learning rate, whichmodulates the learning algorithm’s balance of lossminimization and diversitymaintenance,
affects the relationship between potential information and regret. Ultimately, Theorem 1 and the associated propositions are stated
in terms of the replicator dynamics case where η = 1 and ℓ(i, j) = − log wij .

Proposition D3. Let pt be the type frequency distribution of a population that evolves according to discrete-time replicator dynamics over
a distribution of environmental conditions xt at time t. Then the change in the potential information between pt and an arbitrary type
frequency distribution q can be expressed

D(q||pt+1) − D(q||pt) = −
(
ℓ(pt, xt) − ℓ(q, xt)

)
+ O(

〈
k2〉t) , [D249]

where kij is the Wrightian selection coefficient of type i in condition j (Appendix A.1.1) and
〈
k2〉t =

∑
i,j

pt
ix

t
jk2

ij is the expected squared
selection coefficient across types and conditions at time t. We refer to the quantity

(
ℓ(pt, xt) − ℓ(q, xt)

)
as the instantaneous regret with

respect to q.

Proof. We set out to evaluate an expression for the difference in the potential information across one update of the learning process:

D(q||pt+1) − D(q||pt) =
∑

i

qi log qi

pt+1
i

−
∑

i

qi log qi

pt
i

definition of KL divergence [D250]

=
∑

i

qi

(
log qi

pt+1
i

− log qi

pt
i

)
[D251]

=
∑

i

qi

(
log qi − log pt+1

i − log qi + log pt
i

)
[D252]

=
∑

i

qi

(
log pt

i − log pt+1
i

)
[D253]

=
∑

i

qi log pt
i

pt+1
i

[D254]

=
∑

i

qi log pt
i

pt
i
e−ηℓ(i,xt)∑

k
pt

k
e−ηℓ(k,xt)

pt+1
i = pt

ie
−ηℓ(i,xt)∑

k
pt

ke−ηℓ(k,xt) is MWU (Equation C113) [D255]

=
∑

i

qi log
∑

k
pt

ke−ηℓ(k,xt)

e−ηℓ(i,xt) [D256]

=
∑

i

qi

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
− log

(
e−ηℓ(i,xt)

))
[D257]

=
∑

i

qi

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
−
(
−ηℓ(i, xt)

))
[D258]

=
∑

i

qi

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ ηℓ(i, xt)

)
[D259]

=
∑

i

(
qi log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ qiηℓ(i, xt)

)
[D260]

=
∑

i

qi log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ η
∑

i

qiℓ(i, xt) [D261]

= log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ ηℓ(qt, xt) . def. of expected loss ℓ(qt, xt) (Equation C69) [D262]
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In order to simplify the first term further, we can invoke Jensen’s inequality. Jensen’s inequality states that for a concave function g(u)

g

(∑
i
aiui∑
i
ai

)
≥
∑

i
aig(ui)∑

i
ai

. [D263]

This can be equivalently restated as

g

(∑
i
aiui∑
i
ai

)
=
∑

i
aig(ui)∑

i
ai

+ ξ , [D264]

where ξ is the value of the Jensen gap—the difference between the left- and right-hand sides of Jensen’s inequality

ξ = g

(∑
i
aiui∑
i
ai

)
−
∑

i
aig(ui)∑

i
ai

. [D265]

Using Equation D264, we can express the first term in Equation D262 as

log

(∑
i

pt
ie

−ηℓ(i,xt)

)
=
∑

i

pt
i log

(
e−ηℓ(i,xt)

)
+ ξt . [D266]

Picking up where we left off in the derivation of an expression for the change in potential information, we have

D(q||pt+1) − D(q||pt) = log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ ηℓ(qt, xt) [D267]

=

[∑
i

pt
i log

(
e−ηℓ(i,xt)

)
+ ξt

]
+ ηℓ(qt, xt) [D268]

=

[
−η
∑

i

pt
iℓ(i, xt) + ξt

]
+ ηℓ(qt, xt) [D269]

=
[
−ηℓ(pt, xt) + ξt

]
+ ηℓ(qt, xt) [D270]

= −ηℓ(pt, xt) + ηℓ(qt, xt) + ξt [D271]
= −η

(
ℓ(pt, xt) − ℓ(qt, xt)

)
+ ξt . [D272]

At this point we see that the change in potential information across one update of the discrete-time learning process is proportional
to (equal to for η = 1) the inverse of the instantaneous regret experienced in the most recent time step, plus a value equal to the
Jensen gap ξt that arose in our derivation. From here, we would like to evaluate the size of this Jensen gap term. Solving for ξt using
Equation D265 and Equation D266, we have

ξt = log

(∑
i

pt
ie

−ηℓ(i,xt)

)
−
∑

i

pt
i log

(
e−ηℓ(i,xt)

)
[D273]

= log

(∑
i

pt
ie

−ηℓ(i,xt)

)
−
∑

i

pt
i

(
−ηℓ(i, xt)

)
[D274]

= log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ η
∑

i

pt
iℓ(i, xt) . [D275]

In general, the size of this Jensen gap depends on the choice of loss function ℓ(i, j), but we can evaluate the size of this gap further
by considering the particular loss function ℓ(i, j) = − log wij and learning rate η = 1 that are implicit in the replicator dynamics
instance of MWU:

ξt = log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ η
∑

i

pt
iℓ(i, xt) [D276]

= log

(∑
i

pt
ie

−
∑

j
xt

j ℓ(i,j)

)
+
∑

i

pt
i

∑
j

xt
jℓ(i, j) def. of expected loss ℓ(i, xt) for type i [D277]

= log

(∑
i

pt
ie

−
∑

j
xt

j(− log wij)
)

+
∑

i

pt
i

∑
j

xt
j (− log wij) let ℓ(i, j) = − log wij [D278]

= log

(∑
i

pt
ie

∑
j

xt
j log wij

)
−
∑

ij

pt
ix

t
j log wij . [D279]
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We can simplify the first term in this gap expression bymaking use of Jensen’s inequality (EquationD263) again. In particular, Jensen’s
inequality tells us that

∑
j

xt
j log wij ≤ log

∑
j

xt
jwij , which implies that exp

(∑
j

xt
j log wij

)
≤ exp

(
log
∑

j
xt

jwij

)
.

ξt = log

(∑
i

pt
ie

∑
j

xt
j log wij

)
−
∑

ij

pt
ix

t
j log wij [D280]

ξt ≤ log

(∑
i

pt
ie

log
∑

j
xt

j wij

)
−
∑

ij

pt
ix

t
j log wij applying Jensen’s inequality to exponential term [D281]

ξt ≤ log

(∑
i

pt
i

(∑
j

xt
jwij

))
−
∑

ij

pt
ix

t
j log wij [D282]

ξt ≤ log

(∑
ij

pt
ix

t
jwij

)
−
∑

ij

pt
ix

t
j log wij . [D283]

We have arrived at an inequality that bounds the Jensen gap in terms of relative fitnesses, but the scale of this bound is not particularly
intuitive. We can derive a simpler expression for the magnitude of the Jensen gap by expressing relative fitnesses in terms of Wrightian
selection coefficients: wij = 1 − kij (Appendix A.1.1).

ξt ≤ log

(∑
ij

pt
ix

t
jwij

)
−
∑

ij

pt
ix

t
j log wij [D284]

ξt ≤ log

(∑
ij

pt
ix

t
j (1 − kij)

)
−
∑

ij

pt
ix

t
j log (1 − kij) wij = 1 − kij [D285]

ξt ≤ log

(
1 −

∑
ij

pt
ix

t
jkij

)
−
∑

ij

pt
ix

t
j log (1 − kij) [D286]

ξt ≤ log
(
1 − ⟨k⟩t

)
−
∑

ij

pt
ix

t
j log (1 − kij) . [D287]

Applying the Taylor expansion log (1 − u) = −
∑∞

a=1
ua

a
to the logarithms in both terms and simplifying

ξt ≤

(
− ⟨k⟩t −

(
⟨k⟩t
)2

2 −
(
⟨k⟩t
)3

3 − . . .

)
−
∑

ij

pt
ix

t
j

(
−kij −

k2
ij

2 −
k3

ij

3 − . . .

)
[D288]

ξt ≤

(
− ⟨k⟩t −

(
⟨k⟩t
)2

2 −
(
⟨k⟩t
)3

3 − . . .

)
−

(
−
∑

ij

pt
ix

t
jkij −

∑
ij

pt
ix

t
j

k2
ij

2 −
∑

ij

pt
ix

t
j

k3
ij

3 − . . .

)
[D289]

ξt ≤

(
− ⟨k⟩t −

(
⟨k⟩t
)2

2 −
(
⟨k⟩t
)3

3 − . . .

)
−

(
− ⟨k⟩t −

〈
k2〉t

2 −
〈
k3〉t

3 − . . .

)
[D290]

ξt ≤ − ⟨k⟩t −
(
⟨k⟩t
)2

2 −
(
⟨k⟩t
)3

3 − · · · + ⟨k⟩t +
〈
k2〉t

2 +
〈
k3〉t

3 + . . . [D291]

ξt ≤
〈
k2〉t

2 −
(
⟨k⟩t
)2

2 +
〈
k3〉t

3 −
(
⟨k⟩t
)3

3 + . . . [D292]

ξt = O(
〈
k2〉t) . [D293]

We find that the Jensen gap is bounded by an infinite series involving the expected values of the population’s selection coefficients
across types and conditions. Turning to Jensen’s inequality yet again gives

〈
k2〉t

/2 ≥
(
⟨k⟩t
)2

/2, which tells us that this series is
dominated by the first term

〈
k2〉t

/2. Thus we establish that the Jensen gap term ξt is on the order O(
〈
k2〉t) or less.

Therefore, in the case of discrete-time replicator dynamics where η = 1 and ℓ(i, j) = − log wij , the change in potential infor-
mation across one update is given by

D(q||pt+1) − D(q||pt) = −η
(
ℓ(pt, xt) − ℓ(qt, xt)

)
+ ξt Equation D272 [D294]

= −
(
ℓ(pt, xt) − ℓ(qt, xt)

)
+ O(

〈
k2〉t) , [D295]

as was to be shown.
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Proof ofTheorem 1. Proposition D3 relates the instantaneous change in potential information to the instantaneous regret for discrete-
time replicator dynamics. Considering the regret with respect to a stationary evolutionarily stable state p, we have that

−
(
ℓ(pt, xt) − ℓ(p, xt)

)
+ O(

〈
k2〉t) = D(p||pt+1) − D(p||pt) . Proposition D3 [D296]

Summing over a period of selection of duration T we obtain
T∑

t=0

[
−
(
ℓ(pt, xt) − ℓ(p, xt)

)
+ O(

〈
k2〉t)

]
=

T∑
t=0

[
D(p||pt+1) − D(p||pt)

]
[D297]

−
T∑

t=0

[
ℓ(pt, xt) − ℓ(p, xt)

]
+

T∑
t=0

O(
〈
k2〉t) =

T∑
t=0

[
D(p||pt+1) − D(p||pt)

]
[D298]

−

[
T∑

t=0

ℓ(pt, xt) −
T∑

t=0

ℓ(p, xt)

]
+

T∑
t=0

O(
〈
k2〉t) =

T∑
t=0

[
D(p||pt+1) − D(p||pt)

]
[D299]

−
[
LT − L̄T

]
+

T∑
t=0

O(
〈
k2〉t) = D(p||pT +1) − D(p||p0) definitions of LT and L̄T [D300]

−R̄T +
T∑

t=0

O(
〈
k2〉t) = D(p||pT +1) − D(p||p0) definition of regret R̄T [D301]

R̄T −
T∑

t=0

O(
〈
k2〉t) = −D(p||pT +1) + D(p||p0) [D302]

R̄T = D(p||p0) − D(p||pT +1) +
T∑

t=0

O(
〈
k2〉t) [D303]

R̄T ≤ D(p||p0) +
T∑

t=0

O(
〈
k2〉t) . D(p||pT ) ≥ 0 [D304]

We know that
〈
k2〉t is decreasing monotonically when selection is approaching a stationary evolutionarily stable state, so∑T

t=0 O(
〈
k2〉t) is sublinear in T . Therefore we can restate the bound on regret

R̄T ≤ D(p||p0) + O(
〈
k2〉t=0) , [D305]

as was to be shown. The stationary evolutionarily stable state p is an asymptotically stable equilibrium point, and the population’s
initial type distribution is within its basin of attraction as stated in the premise of the theorem. Therefore, pT → p as T → ∞, and
we have that

lim
T →∞

R̄T = D(p||p0) − D(p||pT +1) + O(
〈
k2〉t=0) [D306]

lim
T →∞

R̄T = D(p||p0) − D(p||p) + O(
〈
k2〉t=0) [D307]

lim
T →∞

R̄T = D(p||p0) + O(
〈
k2〉t=0) . KL divergence is zero for equal distributions [D308]

as was to be shown.

When most individuals have similar relative fitnesses and thus the selection coefficients kij are small, the Jensen gap is also small.
In the limit of weak selection where the selection coefficients kij are nearly zero for all types i in all conditions j, the Jensen gap is
vanishing and the results stated in Proposition D3 and Theorem 1 are equal to the corresponding results for continuous-time replicator
dynamics (Proposition D1 and Theorem D1).

Corollary 1.1. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT such that the popula-
tion’s initial type distribution p0 is in the basin of attraction of an evolutionary stable state p that remains stationary for all t ∈ [0, T ],
the total regret R̄T with respect to p of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics
in the limit of weak selection is bounded from above by the initial potential information

R̄T ≤ D(p||p0) ∀ T , [D309]

with equality as T → ∞

lim
T →∞

R̄T = D(p||p0) . [D310]

McGee et al. bioRχiv | 45

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


D.3.2 Regret bounds for variable learning problems

Now we expand our consideration to the general case where no assumptions are made about the sequence of environments or stable
states. The upper bounds established in this setting provide guarantees for the maximum possible regret a population can experience in
any setting, including arbitrary or adversarial sequences of environments. Therefore these results describe the worst-case performance
of natural selection as a learning process.

Discrete-time replicator dynamics are a special case of the Multiplicative Weights Updating (MWU) algorithm. MWU has
been widely studied in computational learning theory and related fields, and various bounds have been established for this class of
algorithms in different contexts. In some cases—such as when certain assumptions can be made about the learning problem, when
the loss function has certain properties, or when the learning rate can be tuned in response to the learning problem—versions of
MWU achieve very tight bounds on regret. In fact, it can be proven that no other learning process can possibly achieve tighter bound
than some special instances of MWU (Freund and Schapire 1999, Cesa-Bianchi and Lugosi 2006). However, the instance of MWU
that is equivalent to replicator dynamics does not fall into any of these special categories. Nevertheless, general regret bounds for
MWU that hold for any learning rate and any loss function can be directly applied to replicator dynamics.

The main result of this section is the following theorem, which places an upper bound on the total empirical regret of discrete-time
replicator dynamics in the general case.

Theorem3. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT , the total empirical regret
R̃T with respect to p̃ of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics is bounded from above
by

R̃T ≤ D(p̃T
∣∣∣∣p0) + 1

e − 1

(
L̃T + D(p̃T

∣∣∣∣p0)
)

∀ T , [D311]

where L̃T is the cumulative loss of the empirically optimal strategy p̃T , and where e denotes Euler’s number.

This result follows from Freund and Schapire (1999), which in turn draws on the amortized analysis introduced by Kivinen and
Warmuth (1995). We recite an adapted version of their proof here, which follows similar logic as those in previous sections (e.g.,
Equation D202 - Equation D205). The heart of the proof is the following proposition, which bounds the cumulative loss of the
learner in terms of the loss of the empirically optimal strategy and the initial potential information (this proposition is presented as
Proposition 5 in the main text).

PropositionD4. For any gamematrixG and for any sequence of distributions of environmental conditionsx0, . . . , xT , the total cumulative
loss LT of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics is bounded from above by

LT ≤ e

e − 1

(
L̃T + D(p̃T ||p0)

)
∀ T , [D312]

where L̃T is the cumulative loss of the empirically optimal strategy p̃T , and where e denotes Euler’s number.

Proof. As with proofs in the previous sections, we begin by seeking an expression for the change in the potential information in one
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update in terms of single round losses:

D(p̃T ||pt+1) − D(p̃T ||pt) =
∑

i

p̃T
i log p̃T

i

pt+1
i

−
∑

i

p̃T
i log p̃T

i

pt
i

definition of KL divergence [D313]

=
∑

i

p̃T
i

(
log p̃T

i

pt+1
i

− log p̃T
i

pt
i

)
[D314]

=
∑

i

p̃T
i

(
log p̃T

i − log pt+1
i − log p̃T

i + log pt
i

)
[D315]

=
∑

i

p̃T
i

(
log pt

i − log pt+1
i

)
[D316]

=
∑

i

p̃T
i log pt

i

pt+1
i

[D317]

=
∑

i

p̃T
i log pt

i

pt
i
e−ηℓ(i,xt)∑

k
pt

k
e−ηℓ(k,xt)

pt+1
i = pt

ie
−ηℓ(i,xt)∑

k
pt

ke−ηℓ(k,xt) is MWU (Equation C113)

[D318]

=
∑

i

p̃T
i log

∑
k

pt
ke−ηℓ(k,xt)

e−ηℓ(i,xt) [D319]

=
∑

i

p̃T
i

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
− log

(
e−ηℓ(i,xt)

))
[D320]

=
∑

i

p̃T
i

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
−
(
−ηℓ(i, xt)

))
[D321]

=
∑

i

p̃T
i

(
log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ ηℓ(i, xt)

)
[D322]

=
∑

i

(
p̃T

i log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ p̃T

i ηℓ(i, xt)

)
[D323]

=
∑

i

p̃T
i log

(∑
k

pt
ke−ηℓ(k,xt)

)
+ η
∑

i

p̃T
i ℓ(i, xt) [D324]

= log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ ηℓ(p̃T , xt) . def. of expected loss ℓ(p̃T , xt) (Equation C69)

[D325]

Here we make use of the fact that, by convexity, βu ≤ 1 − (1 − β)u for β ≥ 0 and u ∈ [0, 1]*. Thus if we let β = e−η and
u = ℓ(i, xt), then e−ηℓ(i,xt) ≤ 1 − (1 − e−η)ℓ(i, xt). Returning to our derivation at Equation D325, we have

D(p̃T ||pt+1) − D(p̃T ||pt) = log

(∑
i

pt
ie

−ηℓ(i,xt)

)
+ ηℓ(p̃T , xt) [D326]

D(p̃T ||pt+1) − D(p̃T ||pt) ≤ log

(∑
i

pt
i

(
1 − (1 − e−η)ℓ(i, xt)

))
+ ηℓ(p̃T , xt) [D327]

D(p̃T ||pt+1) − D(p̃T ||pt) ≤ log

(∑
i

pt
i − (1 − e−η)pt

iℓ(i, xt)

)
+ ηℓ(p̃T , xt) [D328]

D(p̃T ||pt+1) − D(p̃T ||pt) ≤ log
(
1 − (1 − e−η)ℓ(pt, xt)

)
+ ηℓ(p̃T , xt) . def. of expected loss ℓ(pt, xt) (Equation C69)

[D329]

Now we simplify the first loss term using the fact that log (1 − u) ≤ −u for any u < 1. If we let u = 1 − (1 − e−η)ℓ(pt, xt), then

*Note that any loss function can be scaled to the range [0, 1] without loss of generality.

McGee et al. bioRχiv | 47

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


we have

D(p̃T ||pt+1) − D(p̃T ||pt) ≤ log
(
1 − (1 − e−η)ℓ(pt, xt)

)
+ ηℓ(p̃T , xt) [D330]

D(p̃T ||pt+1) − D(p̃T ||pt) ≤ −(1 − e−η)ℓ(pt, xt) + ηℓ(p̃T , xt) [D331]
D(p̃T ||pt+1) − D(p̃T ||pt) ≤ ηℓ(p̃T , xt) − (1 − e−η)ℓ(pt, xt) . [D332]

By summing this inequality over a period of duration T and rearranging terms we obtain

T∑
t=0

[
D(p̃T ||pt+1) − D(p̃T ||pt)

]
≤

T∑
t=0

[
ηℓ(p̃T , xt) − (1 − e−η)ℓ(pt, xt)

]
[D333]

T∑
t=0

[
D(p̃T ||pt+1) − D(p̃T ||pt)

]
≤ η

T∑
t=0

ℓ(p̃T , xt) − (1 − e−η)
T∑

t=0

ℓ(pt, xt) [D334]

D(p̃T ||pT +1) − D(p̃T ||p0) ≤ ηL̃T − (1 − e−η)LT [D335]

(1 − e−η)LT + D(p̃T ||pT +1) ≤ ηL̃T + D(p̃T ||p0) [D336]

(1 − e−η)LT ≤ ηL̃T + D(p̃T ||p0) D(p̃T ||pT +1) > 0 [D337]

LT ≤ η

1 − e−η
L̃T + 1

1 − e−η
D(p̃T ||p0) . [D338]

The learning rate implicit in the equivalence between replicator dynamics and MWU is η = 1. Plugging in this value for η we have

LT ≤ 1
1 − e−1 L̃T + 1

1 − e−1 D(p̃T ||p0) [D339]

LT ≤ 1
1 − e−1

(
L̃T + D(p̃T ||p0)

)
[D340]

LT ≤ e

e − 1

(
L̃T + D(p̃T ||p0)

)
, [D341]

as was to be shown.

Proof ofTheorem 3. The bound on cumulative load given in Proposition D4 can be rearranged to express a bound on empirical regret

LT ≤ e

e − 1

(
L̃T + D(p̃T ||p0)

)
[D342]

LT ≤ e

e − 1 L̃T + e

e − 1D(p̃T ||p0) [D343]

LT ≤
(

e

e − 1 − 1 + 1
)

L̃T +
(

e

e − 1 − 1 + 1
)

D(p̃T ||p0) [D344]

LT ≤
(

e

e − 1 − 1
)

L̃T + L̃T +
(

e

e − 1 − 1
)

D(p̃T ||p0) + D(p̃T ||p0) [D345]

LT ≤ 1
e − 1 L̃T + L̃T + 1

e − 1D(p̃T ||p0) + D(p̃T ||p0) [D346]

LT − L̃T ≤ 1
e − 1 L̃T + 1

e − 1D(p̃T ||p0) + D(p̃T ||p0) [D347]

R̃T ≤ D(p̃T ||p0) + 1
e − 1

(
L̃T + D(p̃T ||p0)

)
, [D348]

as was to be shown.

D.3.3 Comparing the cost of selection to the cost of other learning algorithms
It is standard practice in computer science to evaluate the relative performance of algorithms in terms of their worst-case performance.
In particular, the worst-case regret is commonly used for evaluating online learning algorithms. In general, we cannotmake guarantees
about the kinds of learning problems (e.g., environments) that a learner will face, so worst-case bounds that describe the maximum
regret a learner can experience in any scenario are useful benchmarks. Theorem 3 provides a worst-case upper bound on regret for
natural selection. This result can be compared to the worst-case regret of alternative algorithms to assess the relative effectiveness of
selection as a learning process.

We can draw certain conclusions about the performance of natural selection relative to other algorithms given that selection is a
member of the widely studied class of Multiplicative Weights Updating (MWU) algorithms. Recall that MWU algorithms feature
a learning rate parameter (η ∈ (0, ∞)) that modulates a balance between concentrating weight on types that have incurred low loss
in the past against maintaining diversity over types that may perform well in the future (Appendix C.2.3). MWU is more reactive to
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each round of loss observations when the learning rate is high (η → ∞), while MWU favors more stable strategies when the learning
rate is low (η → 0). Results from MWU analysis show that MWU is optimal when the learning rate can be appropriately tuned
over the duration of the learning problem, in that no other online learning algorithm can outperform (i.e., achieve lower long-term
regret in the worst case) these instances of MWU (Freund and Schapire 1999, Cesa-Bianchi and Lugosi 2006). The learning rate
implicit in natural selection is a fixed η = 1, but such results go to show that selection is in a class of algorithms that are generally
effective for the learning problems faced by evolving populations.

We can directly evaluate the performance of natural selection relative to other instances of MWU with fixed learning rates. Equa-
tion D338 provides an general upper bound on the worst-case cumulative loss (mismatch load) of a learner using MWU in terms of
the learning rate η. We used this result to evaluate a general regret bound for natural selection where η = 1 (Theorem 3), but we can
also use this load bound to establish a worst-case regret bound for an arbitrary learning rate.

Corollary 3.1. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT , the total empirical
regret R̃T with respect to p̃ of the trajectory of type distributionsp0, . . . , pT generated byMultiplicativeWeights Updatingwith fixed learning
rate η is bounded from above by

R̃T ≤ D(p̃T ||p0) +
[(

η

1 − e−η
− 1
)

L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0)
]

. [D349]

Proof.

LT ≤ η

1 − e−η
L̃T + 1

1 − e−η
D(p̃T ||p0) Equation D338 [D350]

LT ≤
(

η

1 − e−η
− 1 + 1

)
L̃T +

( 1
1 − e−η

− 1 + 1
)

D(p̃T ||p0) [D351]

LT ≤
(

η

1 − e−η
− 1 + 1

)
L̃T +

( 1
1 − e−η

− 1 + 1
)

D(p̃T ||p0) [D352]

LT ≤
(

η

1 − e−η
− 1
)

L̃T + L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0) + D(p̃T ||p0) [D353]

LT − L̃T ≤
(

η

1 − e−η
− 1
)

L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0) + D(p̃T ||p0) [D354]

R̃T ≤
(

η

1 − e−η
− 1
)

L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0) + D(p̃T ||p0) definition of empirical regret [D355]

R̃T ≤ D(p̃T ||p0) +
[(

η

1 − e−η
− 1
)

L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0)
]

. [D356]

[D357]

Corollary 3.1 shows that the worst-case regret of MWU with a fixed learning rate η is bounded by the initial potential information
(similar to the bounds we establish for natural selection) plus a second term (in square brackets) that corresponds to additional regret
that accumulates when responding to a variable learning problem. We see that this additional regret term is a weighted combination
of the cumulative loss of the empirically optimal strategy L̃T and the initial potential information. When the learning rate is high
(i.e., MWU is highly reactive to each round of loss observations) the cumulative loss of the empirically optimal strategy contributes
more to the excess regret, but when the learning rate is low (i.e., MWU favors diversity and type frequencies change relatively little
in each round) the initial potential information contributes more heavily. Interestingly, the learning rate implicit in natural selection,
η = 1, balances loss minimization and diversity maintenance exactly equally (Appendix C.2.4).

Figure D6 illustrates how the worst-case empirical regret (given by Corollary 3.1) changes as a function of the MWU learning rate
for multiple contexts defined by the cumulative expected loss (mismatch load) of the empirically optimal strategy, which is approxi-
mately proportional to the variability of the environment. We see that the worst-case regret is typically minimized for intermediate
learning rates that balance loss minimization and diversity maintenance. Learning rates lower than the optima have correspondingly
higher worst-case regret because they are slow to move toward the empirically optimal strategy. Likewise, learning rates greater than
the optima typically have higher worst-case regret due to the possibility of responding too strongly to short-term variations in the
environment. As the variability of the environment and the the expected loss of the optimal strategy increase, the optimal learning
rate decreases. On the other hand, when the environment is stable such that the optimal strategy can achieve very low cumulative loss
(e.g., the L̃T = 0 curve in Figure D6), high learning rates that move the population toward the optimal strategy quickly are optimal.
The marked points at η = 1 in Figure D6 show how the worst-case regret for natural selection compares to the optimal worst-case
regret (i.e, curve minima) for MWU with fixed learning rates in each context. We see that selection’s learning rate is suboptimal
when the optimal strategy can achieve zero cumulative loss, which reinforces that the gradual nature of selection can be particularly
disadvantageous in constant environments such as those considered by Haldane and Kimura. However, when the environment is
heterogeneous, stochastic, and/or time-varying such that the optimal strategy has non-trivial cumulative expected loss (mismatch
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Fig. D6. The relationship between learning rate and worst-case empirical re-
gret for Multiplicative Weights Updating. The worst-case regret for a learner
using Multiplicative Weights Updating with a fixed learning rate (Corollary 3.1) is
plotted across a range of learning rates (η). Each curve corresponds to a differ-
ent context (learning problem) characterized by the cumulative expected loss (mis-
match load, L̃T ) of the optimal empirical strategy, which is approximately propor-
tional to environment variability (indicated by labels near each curve). All contexts
assume 1 bit of initial potential information (i.e., D(p̃T ||p0) = 1). The learning
rate that gives the lowest worst-case regret bound decreases as the environment
variability and cumulative loss of the optimal strategy increase. Marked points show
the worst-case regret for natural selection, where η = 1, which can be compared
to the optimal regret (minima of curves) for each context. The black marker high-
lights that natural selection’s learning rate is optimal when the cumulative expected
loss of the optimal empirical strategy is equal to 1/(e − 2) times the initial potential
information.

load), then the learning rate of selection is relatively close to the optimum. In variable environments, MWU learning rates that are
much higher or lower than that of selection tend to correspond to greater regret in the worst-case.

We can use the derivative of the regret bound given in Corollary 3.1 to find the optimal learning rate that gives the lowest
worst-case regret for a learning problem with a given optimal load and initial potential information:

d

dη

(
D(p̃T ||p0) +

[(
η

1 − e−η
− 1
)

L̃T +
( 1

1 − e−η
− 1
)

D(p̃T ||p0)
])

=
eη
(

(eη − η − 1) L̃T − D(p̃T ||p0)
)

(eη − 1)2 . [D358]

Setting this derivative equal to 0 and solving for η:

0 =
eη
(

(eη − η − 1) L̃T − D(p̃T ||p0)
)

(eη − 1)2 [D359]

0 = eη (eη − η − 1)
(eη − 1)2 L̃T − eη

(eη − 1)2 D(p̃T ||p0) [D360]

eη (eη − η − 1)
(eη − 1)2 L̃T = eη

(eη − 1)2 D(p̃T ||p0) [D361]

(eη − η − 1) L̃T = D(p̃T ||p0) [D362]

(eη − η) L̃T − L̃T = D(p̃T ||p0) [D363]

(eη − η) L̃T = L̃T + D(p̃T ||p0) [D364]

eη − η = L̃T + D(p̃T ||p0)
L̃T

. [D365]

Equation D365 gives an expression for the optimal learning rate η in terms of the expected load of the optimal strategy and the initial
potential information for a particular learning problem. Evaluating this further to obtain an explicit solution for η involves a product
logarithm (a.k.a. Lambert W function) and does not lend additional intuition.

However, we can evaluate this expression further for η = 1 in order to understand when the learning rate implicit in natural
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selection is optimal:

Learning rate η is optimal when eη − η = L̃T + D(p̃T ||p0)
L̃T

. [D366]

Learning rate η = 1 is optimal when e − 1 = L̃T + D(p̃T ||p0)
L̃T

[D367]

eL̃T − L̃T = L̃T + D(p̃T ||p0) [D368]

eL̃T − 2L̃T = D(p̃T ||p0) [D369]

L̃T (e − 2) = D(p̃T ||p0) [D370]

L̃T = 1
e − 2D(p̃T ||p0) . [D371]

In other words, natural selection’s learning rate is optimal when the cumulative expected loss of the optimal empirical strategy is equal
to 1/(e − 2) ≈ 1.4 times the initial potential information. When the load of the optimal strategy is less than 1/(e − 2) times the
initial potential information, selection’s learning rate is slower than optimal, and when the load of the optimal strategy is greater than
this value, selection’s learning rate is higher than the optimum.

D.4 The cost of information gain
D.4.1 Information gain in a single generation is bounded by look-ahead regret
The following result relates the information gained by selection in a single generation (as measured by the divergence D(pt+1||pt))
to the expected fitness loss due to type mismatch in the current and next generations.

Proposition D5. Let pt be the type frequency distribution of a population that evolves according to discrete-time replicator dynamics over
a distribution of environmental conditions xt at time t. Then the information gain in one selective update, as measured by the divergence
between the population’s updated and previous compositions, can be expressed

D(pt+1||pt) =
(
ℓ(pt, xt) − ℓ(pt+1, xt)

)
+ O(

〈
k2〉t) [D372]

=
∑
i,j

(
pt

i − pt+1
i

)
xt

j (log W∗j − log Wij) + O(
〈
k2〉t) , [D373]

where kij is the Wrightian selection coefficient of type i in condition j (Appendix A.1.1) and
〈
k2〉t =

∑
i,j

pt
ix

t
jk2

ij is the expected squared
selection coefficient across types and conditions at time t.

Proof. This result follows directly fromPropositionD3where the reference distribution q is taken to be the type frequency distribution
in the next generation pt+1.

D(q||pt+1) − D(q||pt) = −
(
ℓ(pt, xt) − ℓ(q, xt)

)
+ O(

〈
k2〉t) Proposition D3

[D374]

D(pt+1||pt+1) − D(pt+1||pt) = −
(
ℓ(pt, xt) − ℓ(pt+1, xt)

)
+ O(

〈
k2〉t) Let q = pt+1

[D375]

−D(pt+1||pt) = −
(
ℓ(pt, xt) − ℓ(pt+1, xt)

)
+ O(

〈
k2〉t) KL divergence is zero for equal distributions

[D376]

D(pt+1||pt) =
(
ℓ(pt, xt) − ℓ(pt+1, xt)

)
+ O(

〈
k2〉t) , [D377]

as was to be shown.

The following corollary that applies the fitness-based loss function implicated by natural selection (Appendix C.2.4) and the limit
of weak selection (O(

〈
k2〉t → 0) is presented as Proposition 4 in the main text.

Corollary D5.1.

D(pt+1||pt) = ℓ(pt, xt) − ℓ(pt+1, xt) [D378]

=
∑
i,j

(
pt

i − pt+1
i

)
xt

j (log W∗j − log Wij) . [D379]
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D.4.2 Information gain converges on ESS regret
The following theorem establishes that the evolving population’s total information gain converges on the total ESS regret of discrete-
time replicator dynamics in contexts characterized by a stationary ESS.

Theorem 2. For any game matrix G and for any sequence of environmental conditions x0, . . . , xT such that the population’s initial type
distribution p0 is in the basin of attraction of an evolutionary stable state p that remains stationary for all t ∈ [0, T ], the total information
gain IT and the total regret R̄T with respect to p of the trajectory of type distributions p0, . . . , pT generated by replicator dynamics in the
limit of weak selection both converge on the value of the initial potential information

lim
T →∞

IT = lim
T →∞

R̄T = D(p||p0) . [D380]

Proof. The stationary evolutionarily stable state p is an asymptotically stable equilibrium point, and the population’s initial type
distribution is within its basin of attraction as stated in the premise of the theorem. Therefore, pT → p as T → ∞, and Corollary 1.1
of Theorem 1 tells us that

lim
T →∞

R̄T = D(p||p0) , [D381]

in the limit of weak selection (i.e., kij ≪ 1 for all i, j) or continuously overlapping generations (Theorem D1).
The convergence of the information gain IT on the same value—the initial potential information—follows from the definition of

information gain and the convergence of pT → p.

IT = D(pT ||p0) definition of IT [D382]
lim

T →∞
IT = lim

T →∞
D(pT ||p0) [D383]

lim
T →∞

IT = D(p||p0) using pT → p as T → ∞ . [D384]

Combining Equation D381 and Equation D384, we obtain the stated result.

D.4.3 Information gain is bounded by empirical regret
The following theorem establishes that the evolving population’s information gain is always bounded by the empirical regret. This
bound is fully general and holds in all environmental contexts.

Theorem 4. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT , the total information
gain IT +1 = D(pT +1||p0) of the trajectory of type distributions p0, . . . , pT +1 generated by discrete-time replicator dynamics is at all times
bounded from above by the empirical regret

IT +1 ≤ R̃T ∀ T . [D385]

Proof. Proposition D3 relates the instantaneous change in potential information to the instantaneous regret with respect to some
reference distribution q for discrete-time replicator dynamics.

D(q||pt+1) − D(q||pt) = −
(
ℓ(pt, xt) − ℓ(q, xt)

)
+ O(

〈
k2〉t) Proposition D3 [D386]

We will work from this result to establish the relationship between the total information gain and the total empirical regret. Summing
over a period of selection of duration T we obtain

T∑
t=0

[
D(q||pt+1) − D(q||pt)

]
=

T∑
t=0

[
−
(
ℓ(pt, xt) − ℓ(q, xt)

)
+ O(

〈
k2〉t)

]
[D387]

T∑
t=0

[
D(q||pt+1) − D(q||pt)

]
= −

T∑
t=0

[
ℓ(pt, xt) − ℓ(q, xt)

]
+

T∑
t=0

O(
〈
k2〉t) [D388]

T∑
t=0

[
D(q||pt+1) − D(q||pt)

]
= −

[
T∑

t=0

ℓ(pt, xt) −
T∑

t=0

ℓ(q, xt)

]
+

T∑
t=0

O(
〈
k2〉t) [D389]

D(q||pT +1) − D(q||p0) = −
[
LT − LT

q

]
+

T∑
t=0

O(
〈
k2〉t) . definitions of LT and LT

q [D390]

bioRχiv | 52 McGee et al.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


Let us evaluate with respect to the choice of reference distribution q = pT +1:

D(pT +1||pT +1) − D(pT +1||p0) = −
[
LT − LT

pT +1

]
+

T∑
t=0

O(
〈
k2〉t) [D391]

−D(pT +1||p0) = −
[
LT − LT

pT +1

]
+

T∑
t=0

O(
〈
k2〉t) KL divergence is zero for equal distributions [D392]

D(pT +1||p0) = LT − LT
pT +1 −

T∑
t=0

O(
〈
k2〉t) [D393]

D(pT +1||p0) ≤ LT − LT
pT +1 . [D394]

So far we have established that the information gain through T + 1 generations is bounded by the cumulative loss of the evolving
population minus the cumulative loss of the fixed reference distribution pT +1.

At this point, we recall that the empirically optimal strategy p̃T is defined as the fixed strategy with the minimum possible
cumulative loss over the observed sequence of environments x0. . .xT in hindsight

p̃T = arg min
q

LT
q = arg min

q

T∑
t=0

ℓ(pt, q) . [D395]

Therefore, by definition, the cumulative loss of the empirically optimal strategy L̃T is less or equal to the cumulative loss of any other
fixed strategy over the same sequence of environments

L̃T ≤ LT
q ∀ q , [D396]

which implies that the empirically optimal cumulative loss is less than or equal to the cumulative loss of the fixed reference distribution
pT +1

L̃T ≤ LT
pT +1 . [D397]

Using this fact with Equation D394, we obtain

D(pT +1||p0) ≤ LT − LT
pT +1 ≤ LT − L̃T , using L̃T ≤ LT

pT +1 [D398]

and therefore

D(pT +1||p0) ≤ LT − L̃T [D399]

D(pT +1||p0) ≤ R̃T defintion of emprical regret R̃T = LT − L̃T [D400]

IT +1 ≤ R̃T , [D401]

as was to be shown.

Corollary 4.1. If the empirical regret R̃T is non-decreasing for all T , which is always the case when the population faces a fixed learning
problem characterized by a stationary ESS, then

IT ≤ R̃T . [D402]

Proof.

IT +1 ≤ R̃T Theorem 4 [D403]

IT ≤ R̃T −1 [D404]

IT ≤ R̃T . using R̃T −1 ≤ R̃T as given in the premise [D405]
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Information gain is bounded by substitution load

Substitution load is a special case of mismatch load that applies when the environment consists of a single unchanging condition (i.e.,
m = 1). In such a case, a single type has the highest fitness for all time and sweeps to fixation. Fixation of the optimal type is the
empirically optimal strategy p̃T for all T , and the empirically optimal cumulative loss is L̃T = 0 for all T . Therefore substitution
load is equivalent to empirical regret R̃T in applicable cases, and it follows from Theorem 4 that the population’s information gain is
always bounded by substitution load in such cases.

Corollary 4.2. If the environment consists of a single unchanging environmental condition (m = 1), then the total information gain
IT = D(pT ||p0) of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics is at all times bounded
from above by the substitution load

IT ≤ LT
sub ∀ T . [D406]

Proof.

IT ≤ R̃T Theorem 4, Corollary 4.1 [D407]

IT ≤ LT − L̃T definition of empirical regret [D408]

IT ≤ LT
sub . LT = LT

sub and L̃T = 0 where m = 1 [D409]

Information gain is bounded by mismatch load in general

Another notable corollary of Theorem 4 is that the information gain of a population that evolves by natural selection is always bounded
by the mismatch load in the general case.

Corollary 4.3. For any game matrix G and for any sequence of distributions of environmental conditions x0, . . . , xT , the total information
gain IT = D(pT ||p0) of the trajectory of type distributions p0, . . . , pT generated by discrete-time replicator dynamics is at all times bounded
from above by the empirical regret

IT ≤ LT ∀ T . [D410]

Proof.

IT ≤ R̃T Theorem 4, Corollary 4.1 [D411]

IT ≤ LT − L̃T definition of empirical regret [D412]

IT ≤ LT . cumulative loss L̃T is non-negative [D413]
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D.5 Supplemental example learning problems
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Freq. Dependence (Snowdrift)
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Fig. D7. Load, regret, and information gain in different environmental contexts. Results from simulations of replicator dynamics in two additional contexts
(columns) are shown. In each column, the matrix G defines the log fitnesses (growth rates) for 2 types in each of 2 environmental conditions. Colored Muller plots
show the population’s type frequency distribution pt over time, and grayscale stacked frequency plots show the distribution of environmental conditions xt over time.
The mismatch load of the evolving population (LT , orange line) and of the ESS composition (LT , dashed gold line) are plotted over time. The bottom-most plot in
each column gives the information gain (teal line) and the ESS regret (R̄T , red line) over the course of selection. (Prisoner’s Dilemma, left) Here the environmental
conditions are defined by the types (dubbed ‘Cooperate’ and ‘Defect’) themselves, and the distribution of conditions is set to the type distribution in every generation
(i.e., xt = pt). This frequency dependence and choice of G define a “Prisoner’s Dilemma” scenario. The best outcome would occur if the population plays an
all-cooperate strategy, which woulds achieve the maximum possible population mean fitness. However, replicator dynamics lead toward a population of all defectors,
which continually reduces the population’s mean fitness and clearly does not maximize fitness outright. If the observed sequence of environments is fixed, then the
population would have been best off playing all-defect from the beginning. The all-defect strategy is a stationary ESS, and the population does indeed learn this locally
optimal strategy using replicator dynamics which achieves vanishing per-round regret. (Snowdrift, right) Here again the environmental conditions are defined by
the types (‘Cooperate’ and ‘Defect’) themselves, and the distribution of conditions is set to the type distribution in every generation (i.e., xt = pt). This frequency
dependence and choice of G define a “Snowdrift” (aka “Hawk-Dove”) game. Replicator dynamics carry the population to a polymorphic ESS where the expected
fitness of cooperators and defectors is equal. The empirically optimal strategy, which globally minimizes expected loss (maximizes expected fitness) for the observed
sequence of environments (given by the type frequencies in this context), is to play all-defect due to the predominance of defectors throughout the environmental
history until equilibrium is reached. This is an example of a sequence of environments where the ESS and the empirically optimal strategy differ.

McGee et al. bioRχiv | 55

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498577doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498577
http://creativecommons.org/licenses/by-nc/4.0/


Appendix E: Selection Experiments
E.1 Strain information
Escherichia coli B (REL606) strains were used in selection experiments and related assays. A “wild type” strain (WT) and three strains
with unique mutations in the rpoB gene (M1, M2, M3) were obtained with permission from the −80◦C strain archive from Lindsey
et al. (2013). Mutations to the rpoB gene conferred each mutant strain with a distinct exponential growth rate that was reduced from
that of the WT strain (Figure E1).

Each strain was transformed with an engineered marker plasmid. The pBR322 plasmid, which carries a bla gene conferring
ampicillin resistance (AmpR) and a tetA gene conferring tetracycline resistance (TetR), served as a vector backbone. Using Gibson
assembly, the bla gene and corresponding promoter region was removed and replaced with an insert carrying a fluorescent protein
gene under a strong constitutive proC promoter. As the strain with the optimal growth rate, the WT strain was transformed with a
plasmid engineered to carry the green fluorescent protein (GFP) gene mGFPmut2. The rpoB mutant strains were each transformed
with plasmids engineered to carry the red fluorescent protein (RFP) gene mScarlet-I.

Strains and culture samples were stored by mixing 1 ml of culture with 160 µl of 80% glycerol and freezing at −80◦C. Strains
were revived from freezer scrapings and incubated overnight prior to all assays and experiments.

Chromosomal Genotype Plasmid
Strain ID E. coli strain Mutations Selective Markers Plasmid ID Vector Backbone FP Marker Gene Insert Selective Markers

WT B (REL606) See Table E2 - pRMbcGFP pBR322 pEB1-mGFPmut2 TetR

M1 B (REL606) See Table E2 RifR pRMbcRFP pBR322 pEB2-mScarlet-I TetR

M2 B (REL606) See Table E2 RifR pRMbcRFP pBR322 pEB2-mScarlet-I TetR

M3 B (REL606) See Table E2 RifR pRMbcRFP pBR322 pEB2-mScarlet-I TetR

Table E1 Basic characteristics of bacterial strains used in selection experiments.

WT M1 M2 M3 Position Gene Mutation Annotation Description

× × × × 3,925,216 gppA← C→T L272L (CTG→CTA) guanosine pentaphosphatase

× 458,185 acrR→ IS1 (+) +9 bp Coding (358 366/648 nt) DNA binding transcriptional repressor

× 4,162,387 rpoB→ T→G L511R (CTG→CGG) DNA-directed RNA polymerase subunit β

× 4,161,298 rpoB→ A→T Q148L (CAG→CTG) DNA-directed RNA polymerase subunit β

× 4,162,382 rpoB→ C→A S509R (AGC→AGA) DNA-directed RNA polymerase subunit β

× 4,161,292 rpoB→ T→A V146D (GTT→GAT) DNA-directed RNA polymerase subunit β

× 4,162,540 rpoB→ A→C E562A (GAA→GCA) DNA-directed RNA polymerase subunit β

Table E2 Mutations present in each bacterial strain relative to the Escherichia coli B (REL606) reference genome (presence of a
mutation in a given strain is indicated by an X in that strain’s column).
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Fig. E1. Selection coefficients. The selection coefficient is a measure of the fitness of a type (i.e., strain) relative to another. In Malthusian fitness terms, the
selection coefficient of a type j is defined as the difference between the exponential growth rate of the optimal type and that of the jth strain; that is, sj = r∗ − rj

(Appendix A.1.2). In our experimental system, the WT strain had the fastest growth rate. Therefore the selection coefficient of a strain j was defined as sj = rWT −rj .
A positive selection coefficient sj > 0 indicates that the growth rate of the jth strain is less than that of the WT strain. By definition, the selection coefficient of the WT
strain is zero (sWT = 0). Here we show the selection coefficients of the mutant strains (M1, M2, M3) relative to the WT strain as measured by an exponential growth
assay. Individual strain cultures were sampled and transferred to fresh media to maintain exponential growth every 2 hours for a total of 8 hours. Cell enumeration was
performed on culture samples using flow cytometry, and strain growth rates were calculated from changes in culture density over the course of the assay. Selection
coefficients were then calculated according to the definition given above. These selection coefficients reflect the relative growth rates of strains after being transformed
with the corresponding marker plasmids.

Fig. E2. Engineered plasmid maps. Each strain was transformed with an engineered marker plasmid. The pBR322 plasmid, which carries a bla gene conferring
ampicillin resistance (AmpR) and a tetA gene conferring tetracycline resistance (TetR), served as a vector backbone. Using Gibson assembly, the bla gene and
corresponding promoter region was removed and replaced with an insert carrying a fluorescent protein gene under a constitutive proC promoter. Left: The pRMbcGFP
plasmid carries a region encoding the green fluorescent protein gene mGFPmut2 under the proC promoter, which was taken from the pEB1-mGFPmut2 plasmid
(Addgene plasmid #103980). Right: The pRMbcRFP plasmid carries a region encoding the red fluorescent protein gene mScarlet-I under the proC promoter, which
was taken from the pEB2-mScarlet-I plasmid (Addgene plasmid #104007).
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E.2 Supplemental methods
Selection competition experiments were conducted between three pairs of strains: WT vs. M1, WT vs. M2, and WT vs. M3. Each
pair of strains participated in three competitions with different initial strain frequency compositions: WT at approximately 12.5%,
25%, and 50% of the initial population, respectively.

Strains were cultured in standard Luria-Bertani (LB) broth with with 15µg/mL tetracycline for plasmid retention (hereafter
referred to as “media”). Cultures were incubated in 25 mL of media in 125 mL capacity flasks at 37◦C with shaking. A single
large batch of media was prepared and used for all cultures across all stages of all experiments, and all competitions were conducted
simultaneously using the same incubator in order to mitigate potential day or block effects.

Strains were revived and incubated overnight to saturation density (~1×109 cfus/mL). Prior to the start of competitions, individual
strain cultures were diluted 1000-fold into 25 mL of fresh media (~1 × 106 cfus/mL) and incubated for 1 hour, which was sufficient
time for cells to begin resuming exponential growth. At the end of this “reanimation” period, the density of each strain culture was
spot-checked using flow cytometry. Selection experiments were initiated by combining the strains to be competed in the designated
ratios at a total density of ~1 × 106 cfus/mL in 25 mL of fresh media. Because the strains had entered exponential growth phase
prior to initiating competitions, some growth occurred during the initiation process, which caused minor imprecisions in the initial
strain frequencies.

Every 4 hours, a 1 mL sample was taken from each competition culture to measure strain densities and frequencies using flow
cytometry (see Appendix E.2.2 for more information). At the same time, a sample of the culture was transferred to 25 mL of fresh
media. An adaptive protocol was used to determine the transfer volume for each competition culture at each transfer in order to ensure
that the culture would remain in exponential growth while maintaining a measurable density for flow cytometry measurements in
the next growth interval (see Appendix E.2.1 for more information). Competitions proceeded in this fashion for 36 hours.

E.2.1 Transfer protocol
Selection experiments involved incubating mixed batch cultures and tracking the densities and frequencies of the competing strains
for a total of 36 hours, which was the time necessary to observe the optimal WT strain approaching fixation in all competitions.
These strains enter a stationary phase as the culture approaches a saturation density of approximately 1 × 109 cfus/mL, so regular
transfers to fresh media were necessary to maintain active growth and selection over this duration. Basic transfer protocols often
involve repeatedly growing cultures to saturation and transfering a sample of the saturated culture to fresh media at low density (e.g.,
~1 × 105 cfus/mL). However, we were interested in measuring the outcomes of selection due to differential exponential growth
rates, and thus we wished to maintain cultures in exponential phase to avoid the potential confounding effects of cells entering and
exiting lag phase. In addition, highly accurate density estimation using flow cytometry required a culture density of at least ~1 × 107

cfus/mL at the time of sampling. Therefore, in order to ensure that the culture would remain in exponential growth while maintaining
a measurable density for the flow cytometer we required a transfer protocol that would reliably maintain culture densities between
~1×107 −1×108 cfus/mL at the end of each growth interval. The following transfer protocol was developed to dynamically calculate
the transfer volume for each competition culture in order to achieve this (note that all competitions were conducted simultaneously).

Fig. E3. Illustration of transfer protocol.

To make things concrete, we outline the transfer protocol from the perspective of an experimenter determining transfer volumes
at the 12 hour mark of the overall experiment (black-shaded block arrow in Figure E3), although the same process was used at all
transfer points throughout the 36 hour experiment. Flasks are labeled by the time point at which they were inoculated (e.g., the ‘0h’
culture flask was inoculated at the beginning of the experiment, the ‘4h’ culture flask was inoculated via transfer at the 4 hour mark,
and so on).

• 4 hours prior to transfer: Data collection samples are taken from each competition, and competition cultures are transferred
to fresh media.

1. Samples are taken from the previous set of culture flasks (e.g., the ‘4h’ cultures) for density estimation on the flow cytometer.
2. The current set of flasks (e.g., the ‘8h’ cultures) are inoculated via transfer and their incubation period begins.
3. Cytometry samples (e.g., of the ‘4h’ cultures) are prepared and measured over the following 1-2 hours.
4. The newly obtained cytometry measurements provide endpoint density estimates for the the previous set of culture flasks

(e.g., the ‘4h’ cultures). The initial density of these same cultures is estimated from the endpoint density of the prior set of
cultures (e.g., obtained from cytometry measurements of the ‘0h’ cultures) and the transfer volumes used at that time. The
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growth rates of each of the previous cultures (e.g., the ‘4h’ cultures) is estimated using the initial and endpoint densities for
this interval (e.g., the 4h-8h interval).

• 30 minutes prior to transfer: A “spot check” is performed on a subset of the current flasks in order to obtain a rough estimate
of the densities and growth rates of the currently incubating cultures.

1. Samples are quickly taken from the competition cultures with the lowest growth rate and the highest growth rate observed
in the latest set of cytometry-based growth rate estimates (e.g., from the ‘4h’ cultures). These flasks are immediately returned
to the incubator to finish the rest of the incubation period.

2. These samples are enumerated on the flow cytometer and used to estimate the endpoint densities and growth rates of the
presumed fastest and slowest growing competition cultures in the current incubation period. This provides a presumed
minimum and maximum growth rate for all competitions in the current growth interval.

3. The endpoint densities for all competition cultures in the current growth interval are projected based on the initial densities
of these cultures (using the previous cultures’ endpoint densities and the transfer volumes involved in their inoculations)
and the average of the growth rates estimated from the spot check measurement described above.

• 10minutes prior to transfer: The transfer volume to be used for each competition culture is calculated as follows (a spreadsheet
was programmed to perform these calculations automatically using flow cytometry data collected previously in the experiment):

– For each competition culture, working in order of highest projected endpoint density (from #3 above) to lowest:
1. If this is the first competition considered, let the “trial” transfer volume for this competition culture be a default volume

of 250 µL (i.e., a 100-fold dilution into 25 mL of media); else, let the “trial” transfer volume be the actual transfer
volume of the previously considered competition.

2. Calculate the projected initial density of the post-transfer culture based on the projected final density of the current
culture and the “trial” transfer volume.

3. Calculate the projected endpoint density of this competition culture in the next incubation period based on the pro-
jected initial density and the minimum growth rate that has been observed for any culture so far. Likewise, calculate
the projected endpoint density of this competition culture in the next incubation period using the maximum growth
rate that has been observed for any culture so far. This gives the range of plausible endpoint densities the post-transfer
culture may realize if the “trial” transfer volume is used.

4. If the range of plausible endpoint densities using the “trial” transfer volume falls within the acceptable range of endpoint
densities (i.e., 1 × 107 − 1 × 108 cfus/mL), then use the “trial” transfer volume to transfer this competition culture;
else, do the following:

* Backcalculate the initial density that would lead this culture to just reach the minimum acceptable endpoint density
(i.e., 1×107 cfus/mL) if the culture were to grow at theminimum growth rate that has been observed for any culture so
far. This is the smallest post-transfer initial density that is ensured to reach the minimum acceptable endpoint density
in a worst-case, slow growth scenario (based on the range of growth rates observed to this point). (This heuristic is
used because we deemed it more important to guarantee that cultures reach accurately measurable densities than to
guarantee that cultures do not approach saturation.)

* Calculate the transfer volume that would give this initial density based on the projected endpoint density for this
culture in the current incubation period.

* Use this “backcalculated” transfer volume to transfer this competition culture.

• At time of transfer: Data collection samples are taken from each competition, and competition cultures are transferred to fresh
media using the calculated transfer volumes. The cycle repeats for the following incubation period and transfer.

This transfer protocol successfully maintained endpoint densities for all competition cultures within the range 8.3×106−2.7×108

cfus/mL throughout the entire 36 hour experiment, with only a few culture endpoints falling outside of the tight target range of
1 × 107 − 1 × 108 cfus/mL. All culture samples had densitites that were accurately measurable on the flow cytometer, and no
competition culture showed signs of cells exiting exponential phase to any appreciable degree.
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E.2.2 Flow cytometry
Flow cytometry was used to enumerate cells in culture samples and estimate culture densities. Fixed fluorescence gates were estab-
lished to separately enumerate cells expressing GFP and RFP markers. Culture samples were immediately centrifuged at 13,000 rpm
for 5 minutes to remove growth media supernatant. Pelleted cells were then resuspended in 1 mL of flow buffer (1X PBST with
EDTA added at a 500-fold dilution). Samples were then transferred to a round-bottom 96-well plate where a 10-fold dilution series
was performed. The accuracy of cell enumeration was maximized when the sample density was in the range of ~1 × 104 − 1 × 106

cfus/mL, and samples were measured at 10-fold, 100-fold, and 1000-fold dilutions to ensure each sample had measurements in this
range. Three replicate flow cytometer enumerations were performed for each sample at each dilution.

Fig. E4. Example flow cytometry data. Culture densities were estimated with cell enumeration using a BD Accuri C6 Flow Cytometer. These plots present example
data collected from a single sample taken from a mixed culture of GFP-marked WT cells and RFP-marked M1 cells. The x- and y-axes refer to fluorescence intensities
in the wavelength bands indicated in parentheses. Each point represents the fluorescence intensities of a particle drawn from the culture sample. Three distinct
clusters of points are immediately apparent, and fixed fluorescence gates were established to automatically differentiate GFP-marked cells, RFP-marked cells, and
other particles. Cells that fall within the RFP gate are colored red above, cells that fall within the GFP gate are colored green, and other particles that fall outside of
both FP gate regions are colored gray. Such data provides counts of GFP-marked cells, RFP-marked cells, and total cells, which can be used to calculate the strain
densities and frequencies in the culture from which the cytometry sample was taken.

Fig. E5. Correspondence of cell enumeration using flow cytometry vs. agar plating. Mixed cultures of GFP-marked cells and RFP-marked cells were grown from
low density (~1×106 cfus/mL) to saturation (~2×109 cfus/mL). Samples of these cultures were taken throughout the growth process with densities spanning several
orders of magnitude. Culture densities were estimated both with cell enumeration using a BD Accuri C6 Flow Cytometer and with traditional agar plating and colony
counting (colonies of GFP-marked cells appear green, and colonies of RFP-marked cells appear pink). These plots show how density estimates from flow cytometry
compare to those from plating. Each point depicts the respective density estimates for the same culture sample. The leftmost plot shows the correspondence of density
estimates for all cells, the middle plot shows the correspondence of density estimates for GFP-marked cells alone, and the rightmost plot shows the correspondence
of density estimates for RFP-marked cells alone. In all cases, the correlation of cytometry- and plating-based estimates of culture density is high.
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E.3 Supplemental results of selection experiments

Fig. E6. Supplemental results from selection experiments. Here we show the changes in strain frequencies (a plots) and growth rates (b plots), and information
and load measures (c plots) over time for each of the 9 selection competitions presented in main text Figure 3. The title of each sub-panel indicates the strain
combination and approximate initial frequency of the optimal WT strain in the respective competition.
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