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In the context of Wright’s adaptive landscape, genetic epistasis
can yield a multipeaked or “rugged” topography. In an unstruc-
tured population, a lineage with selective access to multiple peaks
is expected to fix rapidly on one, which may not be the highest
peak. In a spatially structured population, on the other hand, ben-
eficial mutations take longer to spread. This slowdown allows
distant parts of the population to explore the landscape semiinde-
pendently. Such a population can simultaneously discover multiple
peaks, and the genotype at the highest discovered peak is ex-
pected to dominate eventually. Thus, structured populations sac-
rifice initial speed of adaptation for breadth of search. As in the
fable of the tortoise and the hare, the structured population (tor-
toise) starts relatively slow but eventually surpasses the unstruc-
tured population (hare) in average fitness. In contrast, on single-
peak landscapes that lack epistasis, all uphill paths converge.
Given such “smooth” topography, breadth of search is devalued
and a structured population only lags behind an unstructured pop-
ulation in average fitness (ultimately converging). Thus, the
tortoise–hare pattern is an indicator of ruggedness. After verifying
these predictions in simulated populations where ruggedness is
manipulable, we explore average fitness in metapopulations of
Escherichia coli. Consistent with a rugged landscape topography,
we find a tortoise–hare pattern. Further, we find that structured
populations accumulate more mutations, suggesting that distant
peaks are higher. This approach can be used to unveil landscape
topography in other systems, and we discuss its application for
antibiotic resistance, engineering problems, and elements of
Wright’s shifting balance process.
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The adaptive landscape was introduced by Sewall Wright (1) to
visualize potential constraints faced by evolving systems of

genes. Fig. 1 shows a network representation of the landscape
(2–5) in which nodes are genotypes and edges connect genotypes
differing by a single substitution. This network is embedded in
two dimensions, where genotypes are grouped along the abscissa
by their mutational distance from a common genotype and along
the ordinate by their fitness. Under assumptions of strong selec-
tion and weak mutation (2, 3), adaptive evolution of a population
involves a series of steps across edges from lower to higher nodes.
A genetic network without epistasis (Fig. 1A) is a “smooth land-
scape,” where the single peak is accessible (i.e., reachable by a
series of beneficial mutations) from any other genotype. Despite
different initial mutational steps, independent evolutionary tra-
jectories converge at the peak (Fig. 1A) and fitness likewise con-
verges (Fig. 1B). In contrast, Fig. 1C shows a network where the
sign of the fitness effect of a mutation depends on the background
in which it occurs. Such sign epistasis is a necessary (but not suf-
ficient) condition for the existence of multiple peaks (6). On this

“rugged landscape,” the final genotype reached under independent
trajectories is contingent upon the initial mutation (Fig. 1C) and
fitness can diverge if peaks are heterogeneous in height (Fig. 1D).
Thus, a population can become trapped at a suboptimal peak in
the presence of epistasis.
Because Wright thought epistasis was pervasive (7), he was

particularly concerned about confinement of populations at sub-
optimal peaks within rugged landscapes. He proposed the shifting
balance process (SBP) to explain how populations move from
lower to higher peaks. Integral to the SBP is population structure.
Wright (8) envisioned a population that was distributed into
semiisolated, sparsely populated demes (subpopulations) in which
genetic drift enabled some demes to take downward steps by fixing
deleterious mutations. In this way, a subset of the metapopulation
is able to move from one peak’s domain of attraction to another,
across an “adaptive valley.” The joint action of mutation and se-
lection within this subset drives these demes to the higher peak.
Migration among demes then distributes the alleles associated
with the higher peak across the metapopulation (9–11). Although
there have been various theoretical explorations of the plausibility
of the SBP (11–16), Wright’s process has been controversial (14,
17–19), partly due to its reliance on a complex balance of multiple
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evolutionary processes. The tension inherent in the SBP results
from the need for populations to do opposite things in the land-
scape; for instance, populations must both descend (off lower
peaks) and ascend (to higher peaks). In the present study, because
we start our population far from a peak, ascent is the sole focus.
Adaptation in such a population will be largely influenced by
whether this initial genotype has access to one peak (Fig. 1A) or
many peaks (Fig. 1C). Therefore, it is Wright’s assumption of
ruggedness, and how different kinds of populations respond to it,
that is our principal concern. Here, we explore how manipulation
of population structure (one major component of the SBP) creates
an assay for landscape ruggedness.
Upon first glance, population structure would seem to hinder

adaptation. In a population in which migration is not spatially
restricted (unstructured population), a beneficial mutant that
arises can rapidly fix in what is termed a “selective sweep.” On
the other hand, a favored mutant arising in a population with
restricted migration (structured population) advances more slowly
in what might be termed a “selective creep.” This slow competitive
displacement may also allow multiple semiindependent searches
of the fitness landscape by geographically distant regions of the
population. For a smooth landscape (e.g., Fig. 1A), this enhanced

exploration is superfluous because all selectively accessible tra-
jectories lead to the same single peak. However, on a rugged
landscape, additional exploration may reveal alternate peaks.
For instance, in Fig. 1C, although an unstructured population
might exclusively follow one of the colored trajectories, a struc-
tured population may be able to explore them all simultaneously.
Because discovered peaks may differ in height, a comparison of
them enables the population to reach a better end point on av-
erage. On a rugged landscape, fitnesses in populations differing
in structure emulate the classic fable of the tortoise and the hare.
Specifically, the unstructured population initially adapts faster
(the hare) but is overtaken by the structured population (the
tortoise), which is a poor starter but a strong finisher. Impor-
tantly, on a smooth landscape, the tortoise never takes the lead
and the crossing of average fitness trajectories is not predicted.
Thus, when manipulations to population structure produce a
tortoise–hare pattern, we have a signature of ruggedness.
There have been a handful of theoretical and empirical studies

tracking adaptation in populations in which structure was ma-
nipulated experimentally. For instance, Bergman et al. (15) used
an NK computational model (20–22) to track a 1D array of
evolving bit strings in which dispersal distance was varied. For
rugged landscapes (high K), they found a clear tortoise–hare
pattern: Average fitness in populations with low dispersal started
out below, but eventually overtook, average fitness in pop-
ulations with high dispersal. This pattern disappeared in a
smooth landscape (low K). On the empirical side, Kryazhimskiy
et al. (23) showed that metapopulations of Saccharomyces
cerevisiae with higher rates of migration among subpopulations
evolved higher fitness over the course of their experiment. This
result led the authors to conclude that the adaptive landscape
was smooth. Additional studies using different approaches (e.g.,
tracking diversity across replicates, engineering a small sliver of
the landscape) have found support for both rugged (24–27) and
smooth (4, 26–30) topographies.
Here, we track average fitness of evolving metapopulations of

Escherichia coli, manipulating the pattern of migration among
demes. One critical difference between our experiments and
some of the previous research is that we start with a poorly
adapted strain, ensuring displacement from a peak (a discussion
of this point is provided in SI Appendix, section 1). We also build
a computational model with the NK system, tailored to our ex-
perimental regime. Not only does this model allow us to test our
basic theoretical predictions but it also generates predictions
about the number of mutations accumulated in evolving pop-
ulations under different landscape topographies. We then test
these additional predictions in our bacterial populations.

Results and Discussion
Computational System. In our NK computational model, simu-
lated organisms are bit strings of length N, and the parameter K
is the number of loci affecting the fitness contribution of each
locus (Methods). As K increases, the level of epistatic interaction
increases, yielding more rugged landscapes (31); hereafter, we
refer to K as a “ruggedness” parameter. We explore how rug-
gedness affects fitness trajectories in evolving metapopulations
that differ in population structure. We consider either meta-
populations with spatial restrictions to migration (hereafter, the
Restricted treatment) or metapopulations where migration can
occur between any two demes (hereafter, the Unrestricted treat-
ment). For a smooth landscape topography (K = 0, N = 15),
average fitness initially increases more rapidly in the Unrestricted
treatment relative to the Restricted treatment; however, both
trajectories converge over time (Fig. 2A). For a rugged landscape
(K = 8, N = 15), fitness in the Restricted treatment once again lags
behind fitness in the Unrestricted treatment at the outset. Instead
of converging, however, the fitness trajectories cross, yielding a
higher final fitness for the spatially Restricted treatment (Fig. 2B).

Fig. 1. Adaptive paths in hypothetical landscapes. Here, we consider a
simple biallelic three-locus system. (A) Adaptive landscape can be visualized
by plotting genotype fitness as a function of the number of mutations on a
WT background. Each of the 23 = 8 genotypes is given by a gray point, and
edges (arrows or gray lines) connect genotypes differing by a single muta-
tion. An adaptive peak is a genotype from which all mutations are detri-
mental. A hypothetical landscape with a single peak (the triple mutant) is
shown here. A selectively accessible path exists between two genotypes if a
series of beneficial mutations connect the less fit genotype to the more fit
genotype. On this “smooth” landscape, all of the 3! = 6 paths between theWT
(lacking mutations) and the triple mutant are selectively accessible; three of
these paths are shown by the arrows in different colors. (B) Average fitness
over time is shown for three possible populations following the paths in A. If
we assume that selection is strong and mutation is weak, we can represent the
fixation of each beneficial mutation as a step up in the fitness trajectory. All
trajectories converge on the same final fitness value. (C) Hypothetical land-
scape with multiple peaks. Starting with the WT, mutation and selection can
take the population to different adaptive peaks on this “rugged” landscape,
as illustrated by the different colored trajectories. (D) Average fitness over
time is shown again for three possible populations following the paths in
C. The final fitness of different evolving populations can vary.
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Indeed, we find significantly higher fitness in the Restricted
treatment for K > 3 at the end of our simulation (Fig. 2C; Mann–
Whitney tests with Bonferroni corrections, P < 0.001). The pattern
in Fig. 2B agrees with the tortoise–hare prediction, whereas the
crossing does not occur in Fig. 2A. More generally, with sufficient
ruggedness, a structured population can eventually outperform an
unstructured population (Fig. 2C).
There are a few ways to account for the benefit that pop-

ulation structure confers on rugged landscapes (Fig. 2B). First, a
population may have access to multiple peaks that differ in
height. A structured population can explore multiple domains in
parallel, eventually comparing the results. Thus, it will tend to
attain a higher end point for the same reasons that the expec-
tation of the maximum of a sample increases with sample size.
This effect holds when all peaks are equidistant from the an-
cestral population (results from a simple model are provided in
SI Appendix, section 2). A second possibility (not mutually exclu-
sive with the first) is that peaks differ in both height and distance
from the ancestral population. Suppose that the initial mutations
on accessible paths to the more distant and higher peaks are less
beneficial than mutations leading to the nearby peaks. In this case,
intermediate genotypes approaching distant peaks risk being out-
competed in an unstructured population (consider the first mutant
on the blue path to the more distant peak in Fig. 1C competing
against the other first mutants). This situation occurs because the
slower fixation of these intermediates might allow for better com-
petitors (from domains of nearer peaks) to arise. In contrast, these
more distant peaks become accessible in a structured population
due to reduced competitive displacement (16). If some of these
distant peaks are also higher, then structured populations are pre-
dicted to achieve better fitness and to accumulate more mutations.
We sought to explore the number of mutations accrued by

different evolving populations in the NK computational model.
We define evolutionary distance to be the number of mutational
differences between an evolved isolate and its ancestor. In the
NK model, this evolutionary distance is the Hamming distance
(32). As ruggedness increases, the degree of population structure
affects final evolutionary distance from the ancestor; for exam-
ple, we find a significantly higher distance in the Restricted
treatment for K > 3 at the end of our simulation (Fig. 3; Mann–
Whitney tests with Bonferroni corrections, P < 0.001). Thus, on a
rugged landscape, a population with restricted migration moves
both higher (Fig. 2C) and further (Fig. 3) than a less structured
population.

Bacterial System.We next turned to examining fitness trajectories
in evolving metapopulations of E. coli. Similar to the NK model,
we propagated the bacteria under two treatments differing in
migration pattern: restricted and unrestricted (Methods). Every
six transfers in the evolutionary run, we determined the fitness of
five isolates per metapopulation relative to the common ances-
tor. Early in the experiment (transfers 6 and 12), fitness in the
Restricted treatment was significantly lower than in the Unre-
stricted treatment (Fig. 4; Mann–Whitney test, both P = 0.015).
However, at the end of the experiment (transfers 30 and 36), the
opposite pattern was found, with fitness in the Restricted treat-
ment surpassing fitness in the Unrestricted treatment (Fig. 4;
Mann–Whitney test, both P = 0.015). This pattern is consistent
with a rugged landscape topography.

Fig. 2. Fitness in the NK model. Metapopulations of bit strings of length N = 15 evolved where migration was restricted to occur between neighboring
demes or migration was unrestricted (occurring between any two demes). Average fitness in the metapopulation is shown over time on a smooth landscape
(A; K = 0) or a rugged landscapes (B; K = 8). (C) Average fitness at time point 1,000 is shown as a function of the ruggedness parameter, K. Note the values at
K = 0 and K = 8 correspond to the values at time point 1,000 in A and B, respectively. In all plots, points represent the mean of 50 replicates, shading gives the
SEM, and asterisks indicate significant differences.

Fig. 3. Distance in the NK model. Metapopulations of bit strings of length
N = 15 evolved where migration was spatially restricted or unrestricted.
Evolutionary distance is the number of bits differing between an evolved
isolate and its ancestor (the Hamming distance). Average distance at time
point 1,000 is shown as a function of the ruggedness parameter, K. Points
represent the mean of 50 replicates, shading gives the SEM, and asterisks
denote significant differences.
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In addition to assessing fitness on the isolates from the end of
the experiment (transfer 36), we sequenced their genomes to
determine their evolutionary distance from the common ances-
tor. The locations of all identified mutations in all sequenced
isolates are shown in Fig. 5 (a full list is provided in SI Appendix,
Table S1). We note that all mutations in coding regions were
nonsynonymous; it is thus reasonable that these changes affected
phenotype in ways visible to selection. The number of mutations
accumulated in each isolate is the evolutionary distance (the
points to the right of the table in Fig. 5). We find that isolates
have moved a significantly greater distance in the Restricted
treatment (Mann–Whitney test, P = 0.045). The increased dis-
tance traversed by bacterial populations is again consistent with a
rugged landscape, in which more distant peaks are being reached
by structured populations.
The ability of the structured populations to move higher (in

average fitness) and further (in evolutionary distance) is engen-
dered by the capacity for parallel search. The presence of simul-
taneous selective creeps should increase the standing diversity
within a structured population relative to an unstructured one. In
line with this prediction, the metapopulations in the Restricted
treatment had significantly higher genotypic diversity than the
metapopulations in the Unrestricted treatment (Mann–Whitney
test on the nucleotide diversity index π, P = 0.016). We note that
greater diversity in structured populations is expected regardless
of the topography of the landscape (SI Appendix, section 3);
however, such diversity is only advantageous when the landscape
is multipeaked.

Wright’s SBP. Our work also sheds light on a central theoretical
debate about evolution, originating during the modern evolu-
tionary synthesis. One view considers adaptation as the sequen-
tial fixation of beneficial mutations. This perspective (often associated
with Fisher) does not highlight epistatic contingency, focusing instead
on selection and mutation as the major processes of evolution (33). A
second perspective (often linked to Wright) recognizes epistatic in-
teraction as constraining adaptation. Wright developed his SBP as an
account of how evolving populations could escape from the domains
of suboptimal peaks in a rugged adaptive landscape. Critics of the
SBP have noted that it demands a delicate balance of various

evolutionary processes, constraining the range of its application
(10, 12, 17). For instance, populations need be small enough for
effective drift to occur but large enough for effective selection
within demes (12), and migration should be sufficiently re-
stricted for drift and selection within demes but sufficiently
unrestricted for effective exchange of genotypes among demes
(9, 10). However, if we set aside Wright’s goal of explaining
how populations cross valleys, many of these tensions vanish
(17). The populations in our experiments start in valleys, rather
than facing them as obstacles (thus, evolution can be driven
primarily by selection). The question that naturally follows is how,
in the absence of drift, might a population come to be positioned
in a valley in the first place?
Both Fisher and Wright acknowledged that environmental

change could alter the landscape, and, in the process, reposition
the peaks. Imagine that a population experiences such a change,
and subsequently resides somewhere on the new landscape with
access to multiple domains. In our experiment, our ancestor con-
tained deleterious mutations and evolved in a stressful environ-
ment (Methods), which potentially yielded access to multiple
peaks. In this case, demes need not be small for the discovery of
multiple peaks (and, indeed, our experimental demes were large).
With large subpopulations, selection within demes will proceed
efficiently; however, limitations to migration between demes will
still allow for a broader search of the landscape. If landscapes are
indeed rugged, population structure can retain the critical role
Wright foresaw, involving parallel search of different domains,
even if all of the details of the SBP are not present.

Applications. One case where populations are potentially poised
in multiple domains on a landscape involves the evolution of
microbes exposed to antibiotics. When a bacterial population
experiences a sufficiently high concentration of an antibiotic,
susceptible genotypes are replaced by resistant mutants. When
the drug is removed, these mutants tend to carry fitness costs
relative to their susceptible progenitors. The cost can be alle-
viated by a mutation resulting in reversion to susceptibility or a
mutation that compensates for the impairment without loss of
resistance (34, 35). There is some evidence that reversion and
compensation constitute distinct peaks in a rugged landscape
(35). Thus, we see that a changing environment (exposure and
removal of a drug) may place a microbial population at a
landscape position where multiple peaks are accessible (2). It is
at such a position that population structure may influence the
evolutionary trajectory. Björkman and Andersson (36) and
Nagaev et al. (37) serially passaged Salmonella typhimurium
and Staphylococcus aureus resistant to fusidic acid either in
well-mixed flasks or within murids (mice or rats). These authors
found that the bacteria more often reverted when grown in vivo
than in vitro. They explain these results by noting that the flask
and murid environments differ markedly, and may conse-
quently place different selective pressures on revertants and
compensated strains (indeed, they present data to this effect).
In our terminology, the landscape in a flask and a mouse may
be different. However, even if the landscape were identical (but
rugged) in both, the results might not be unexpected because a
murid environment is highly structured and a shaking flask is
not. Thus, if the “reversion peak” is higher than most to all of
the “compensation peaks” (the authors present data consistent
with this ordering), then evolution in a structured environment
is predicted to lead to reversion at higher frequency. In this
way, the structure that pathogenic bacteria experience (in-
cluding in the bodies of human hosts) can potentially influence
the course of antibiotic resistance evolution (a discussion of
additional pilot experiments on antibiotic resistance evolution
is provided in SI Appendix, section 4).
Not only can the ideas in this paper apply in a medical context

but they may also address practical engineering problems. In the

Fig. 4. Bacterial fitness. Metapopulations of bacteria evolved where mi-
gration was spatially restricted or unrestricted. The average relative fitness
of five isolates randomly sampled from the metapopulation is shown every
six transfers. As in Fig. 2B, the ordering of fitnesses for the two treatments
flips over time. Each point represents the mean of five replicate metapop-
ulations, shading gives the SEM, and asterisks denote significant differences.
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field of evolutionary computation, putative solutions to compu-
tational problems constitute a population, new solutions are
generated by mutation and recombination, and better solutions
can outcompete their contemporaries. One defining feature of a
difficult problem is the presence of multiple optima in the map
from the specification of a solution (i.e., genotype) to its quality
(i.e., fitness). As early as 1967, Bossert (38) suggested that di-
viding a population of solutions into subpopulations could yield
better evolutionary outcomes. Subsequently, the inclusion of
population subdivision in evolutionary algorithms has produced
better solutions in a variety of applications, including analog
circuit design (39), financial trading models (40), and multi-
objective scheduling (41). Besides the efficiency in networked
computational resources that accompanies population sub-
division, a deeper exploration of the landscape of solutions
is predicted to occur when multiple domains can be semi-
independently searched (42, 43). The success of subdivision
strategies speaks to the rugged nature of the solution landscape,
because it is precisely such ruggedness that allows slow and
steady adaptation to “win the race.”

Methods
Ancestral Bacterial Strain. The bacterial ancestor was derived from a K-12
strain of E. coli (BZB1011) by selecting for resistance to colicin E2, then colicin
D, and then phage T6. Resistance to both colicin E2 and phage T6 is known
to be individually costly (44, 45). The initiation of the experiment with an
unfit strain was intentional (SI Appendix).

Experimental Treatments. Each metapopulation comprised 96 subpopulations
(the 96wells of amicrotiter plate). Themetapopulationwas initiatedwith the
ancestral strain in each well. Each subpopulation grew for 12 h in 200 μL of
lysogeny broth (LB–Miller) supplemented with a subinhibitory concentration
of tetracycline (0.25 μg/mL). After growth, each well in the metapopulation
was diluted 40-fold into fresh growth medium using a 96–slot-pin multiblot
replicator (5 μL into 200 μL). Immediately following dilution, migrations
among wells occurred. Every well had a 1/3 probability of experiencing an
immigration event from one random well in its neighborhood. In the Re-
stricted treatment, this neighborhood included the wells directly north, east,
south, or west of the focal well (using periodic boundary conditions to
eliminate edge effects). In the Unrestricted treatment, the neighborhood
included all wells minus the focal well. All migration events were executed
by a BioRobot 8000 liquid-handling robot (Qiagen), which transferred 5 μL
from the source well within the plate from the previous transfer into the
destination well within the plate from the current transfer. Between transfers,
plates were incubated (37 °C) and shaken (350 rpm at 1/16 inch circular orbit
using a Bellco digital mini-orbital shaker). Each metapopulation was propa-
gated for a total of 36 transfers, and each treatment contained five replicates.

Competition Assay. We chose five random isolates every six transfers from
each metapopulation (here, each evolved strain is labeled E). We marked our
ancestor with resistance to phage T5 (the marked ancestor is labeled A).
Before the competition, E and A were grown separately in 200 μL of growth
medium for two 12-h cycles (with 40-fold dilution at transfer). After this
acclimation phase, we added 5 μL of E and 5 μL of A to a well containing 200 μL
of fresh growth medium. The titer of each strain was assessed, through selective
plating with and without phage T5, immediately after the competition was
initiated and again after 12 h. If X(t) is the titer of strain X at time t, then the
fitness of the evolved strain relative to its ancestor is

Fig. 5. Bacterial distance. Metapopulations of bacteria evolved where migration was spatially restricted or unrestricted. At the end of the experiment, five
isolates from each metapopulation were sequenced at the genome level. The top bar represents the genome of E. coli. Genome regions with mutations are
magnified for the table. Each isolate is a single row in the table, and the location of each of its mutations is indicated by a white mark (no mutation inside a
coding region was synonymous). The five isolates from each of the five replicate metapopulations are grouped by alternating shades of green (for the
Restricted treatment) or purple (for the Unrestricted treatment). The horizontal distance of the point to the right of the table denotes the number of
mutations in the isolate (its evolutionary distance). The horizontal distance of the green bar and the purple bar to the right of the table gives the average
distance (the average of replicate averages) of isolates from the Restricted and Unrestricted treatments, respectively. The asterisk denotes a significant
difference between treatments. More information regarding each mutation can be found in SI Appendix.
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In SI Appendix, section 5, we explore how well fitness relative to the an-
cestor predicts fitness relative to other (evolved) strains.

Whole-Genome Resequencing. Using the same isolates from the last transfer,
we performed chromosomal DNA extractions using Qiagen Mini DNA Kits.
Each sample was barcoded and multiplexed to 24 samples per lane with
Illumina TruSeq. Whole-genome resequencing (University of Washington
High Throughput Genomics Unit) was performed with single-end, 36-bp un-
paired reads on Illumina HiSeq to an average of 30-fold coverage. Illumina
reads were aligned for mutational discovery by breseq 0.19 (46) against E. coli
W311 (GenBank accession no. AP009048). Alignments were considered only if
they covered 95% of a read. For every isolate, Sanger sequencing of several
loci (fimE, marR, ompF, and stfR) was used to confirm putative mutations.

NKModel. For the simulations, individuals were embeddedwithin 96 demes in
an 8 × 12 array. Each deme contained 1,000 organisms. Each organism’s
genotype was a bit string (a vector of 0’s and 1’s) of length N = 15. The
fitness of an organism was the sum of the fitness contributions of each of
the 15 loci divided by the number of loci. The contribution of locus i was
determined by its allelic state and the allelic states of loci {(i + 1) modulo N}
through {(i + K) modulo N}. For each locus, 2K+1 random numbers (uniformly

distributed between 0 and 1) described all possible fitness contributions of
that locus (given any possible combination of alleles at relevant loci). Thus, a
mutation at a single locus affected the fitness contribution of the mutated
locus and K other loci. Selection within a deme involved the removal of a
random organism, regardless of fitness, and its replacement by the birth of
an organism from the same deme chosen by a fitness-weighted lottery.
Upon birth, the offspring bit string differed from its parent at a random
locus with probability of 0.001 (the mutation rate). This death/birth process
was iterated 1,000 times for each deme, followed by migration between
demes. During each migration event, 25 individuals were chosen at random
and removed from one deme (the destination), and then replaced by copies
of 25 individuals chosen at random from the other deme (the source). Each
deme experienced an immigration event with a 1/3 probability. Migration
was either restricted or unrestricted in the same manner as in the bacterial
experiment above. Each replicate run of the Unrestricted treatment was
paired with a replicate of the Restricted treatment, using the same NK
landscape and the same ancestor (a random bit string used to populate the
entire metapopulation). In the figures, one selection-migration episode is
termed an “update.”
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