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Abstract
Despite the fact that animal behavior involves a particularly
powerful form of niche construction, few researchers have
considered how the environmental impact of behavior may
feed back to influence the evolution of the cognitive underpin-
nings of behavior. I explore a model that explicitly incorporates
niche construction while tracking cognitive evolution. Agents
and their stimuli are modeled as coevolving populations. The
agents are born with “weights” attached to behaviors in a reper-
toire. Further, these agents are able to change these weights
based on previous success and an inherited learning parame-
ter. Both the agent and the stimulus receive payoffs through
a behavioral interaction (where the payoff structure is influ-
enced by the “genotype” of the stimulus). The behaving agent
exhibits niche construction through its effects on stimuli (the
“environment”), which can feed back to influence the value
of different cognitive strategies. Here I focus on two forms
of niche construction: (1) the stimulus and responding agent
have common interests (positive niche construction) and (2)
the stimulus and agent have dissimilar interests (negative niche
construction). The form of niche construction qualitatively af-
fects cognitive evolution (i.e., the initial behavioral probability
distribution and the value of the learning parameter). Given a
mutualism between the stimulus and responding agent, rapid
learning and “fixed” behavioral distributions (i.e., most of the
weight on a single behavior) evolve. Given an antagonism be-
tween the stimulus and agent, slower learning and “flexible”
behavioral distributions (i.e., equal weight on different behav-
iors) evolve. I discuss these results in light of findings from
the fields of ethology, psychology, and evolutionary ecology.
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An unavoidable consequence of being alive is an alteration of
one’s surroundings. All organisms take up critical resources,
generate detritus, and affect one another via ecological inter-
actions. Through their physiology, development, and behav-
ior, organisms alter the world in which they live, a process
labeled “niche construction” (Lewontin 1978, 1982, 1983;
Laland et al. 1996, 1999; Odling-Smee et al. 2003; Laland
and Sterelny 2006). The central idea is that niches are not
simply “out there” to be filled, but rather are forged in part
by the activities of organisms—the “niche constructors.” As
organisms change their abiotic and biotic environments, they
are simultaneously changing current and future selective pres-
sures. In this way, niche construction feeds back to affect the
evolution of the constructor. Such evolutionary feedback has
been shown to have strong effects in a variety of biological sys-
tems, including toxin-producing bacteria in microbial biofilms
(Kerr et al. 2002; Kerr 2007), flammable plants in fire-prone
ecosystems (Kerr et al. 1999; Schwilk and Kerr 2002; Schwilk
2003), mound-building termites (Turner 2000; Odling-Smee
et al. 2003), and pathogens in human populations using an-
tibiotics (Boni and Feldman 2005). In this article, I explore
the effects of niche construction on cognitive evolution in
animals.

Animal behavior is an especially potent form of niche con-
struction. Foraging, mating, artifact construction, and many
other behaviors involve movement within the environment,
response to the environment, and active manipulation of the
environment. Animals choose the stimuli to which they re-
spond and potentially alter their stimulus pool through their
responses. For instance, when a gray lag goose exhibits stereo-
typed egg-rolling behavior (the nest-bound goose extends her
neck and gently rolls a stray egg back into the nest; Lorenz
and Tinbergen [1938] 1970), she places the stimulus (her
egg/offspring) in a position of protection (the nest). As an-
other example, when an osprey learns to catch fish (Edwards
1989; Mameli and Bateson 2006), these food items are re-
moved from the stimulus pool. Such alterations set up feed-
back cycles that could theoretically affect the evolution of the
cognitive structure supporting different behavioral responses.
In the examples above, one behavior (egg-rolling) helps the
stimulus (egg), whereas another behavior (fish-catching) hurts
the stimulus (fish). Does the nature of the interaction between
the stimulus and the responding organism influence the nature
of the response?

Interestingly, much of the theoretical work on animal be-
havior has not incorporated niche construction. Rather, the
approach has been largely “externalist” (sensu Godfrey-Smith
1998) in that the cognitive strategies of behaving organisms
are explained by referring to properties of an autonomous ex-
ternal world. One example of this externalism comes from
the theoretical literature on animal learning. The upshot of
many mathematical models of learning has been called the

“Goldilocks principle” (Kerr and Feldman 2003). If the envi-
ronment changes too quickly, then what was learned yesterday
has no use today and learning is simply a waste of time. On the
other hand, if the environment changes too slowly, the organ-
ism should be “born ready” with the correct response and avoid
the costly learning process altogether. The conclusion is that
environmental variability needs to be “just right” at some inter-
mediate level to favor the learning process. These theoretical
models are externalist because the explanation of the cognitive
strategy emanates from the properties of its external environ-
ment. It is the changeability of an autonomous world that dic-
tates the course of cognitive evolution (Arnold 1978; Plotkin
and Odling-Smee 1979; Johnston 1982; Stephens 1987, 1991;
Bergman and Feldman 1995; Feldman et al. 1996; Godfrey-
Smith 1998; Kerr and Feldman 2003).

In his book, Thought in a Hostile World, Kim Sterelny of-
fers a different perspective. Sterelny explicitly considers how
the effects organisms have on their environments feed back to
influence their cognitive strategies. This requires the recogni-
tion that a behaving agent does not only affect its own fitness
through its behavior, but also affects the welfare of its stimulus.
That is to say, behavior can involve a biological interaction,
simultaneously affecting the environmental stimulus and the
responding organism and setting the stage for coevolutionary
feedback: “Biological interactions change the informational
character of environments, and these changes often select for
more complex tracking and control systems. . . agents’ tracking
capacities have coevolved with each other and their environ-
ments” (Sterelny 2003: 17)

Such considerations are particularly relevant when the
stimulus is an organism itself (e.g., a prey item, a mate, an
offspring, a competitor, a predator, etc.). Sterelny discusses
how the nature of these biological interactions may influence
cognitive evolution. When the behaving organism and its stim-
ulus have an antagonistic relationship (e.g., prey–predator,
host–pathogen, etc.), then behaviors in response to a partic-
ular stimulus that reward the agent select against the stim-
ulus (e.g., a predatory success leads to a dead prey item).
This antagonism means that the stimulus pool is continu-
ally being selected to deceive the agent. Sterelny (2003: 25)
posits that these “hostile” relationships lead to lower reliability
of stimuli: “Thus hostility changes the informational charac-
ter of local environments, degrading the covariation between
easily discriminated cues and the functional properties they
signal.”

In this article, I build on Sterelny’s analysis to explore
how the nature of the interaction between behaving organ-
isms and their stimuli influences the evolution of cognitive
strategies. The modeling framework is broad enough to cap-
ture at least some of the diversity of animal behavior. For
instance, the agents in the model can be born with rela-
tively fixed behavioral responses that are little affected by
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experience. Alternatively, organisms can exhibit very flexible
behavioral strategies, where learning can guide the behav-
ioral response to stimuli. By explicitly including the stim-
uli as a coevolving population, the model starts to address
how the niche construction inherent in behavior can feed back
to influence the cognitive strategy underlying the behavior
itself.

The Model

Overview of the Model
In order to explore the evolutionary consequences of the
feedback from niche construction, I construct an agent-based
simulation tracking both a stimulus population (NS stimuli)
and a population of organisms responding to stimuli (NR

individuals)—hereafter labeled “responders.” The simulations
monitor stimuli and responders within and across generations.
Within generations, each responder reacts to random stimuli
over a series of discrete time points. For simplicity, I assume
that all stimuli are perceived as equivalent by any responder (a
future paper will expand this model to consider cases where
different stimuli can be perceived differently). A responder can
use any one of n behaviors (the size of its behavioral repertoire)
when reacting to a stimulus. Responder action determines the
payoff to the responder and stimulus simultaneously. These
payoffs accumulate throughout the lifetime and determine fit-
ness. At the end of the lifetime (TS and TR time steps for the
stimuli and responders, respectively), offspring are asexually
produced in proportion to the fitness of each parental individ-
ual. Both responder and stimulus offspring can be mutants,
which allow critical parameters to change over time. This sim-
ulation allows us to explore the coevolution of responders and
their stimuli, specifically how the effects responders have on
their stimuli feed back to influence the evolution of the respon-
ders’ cognitive strategies.

Representation of Responders
There is a total of NR responders in the simulation. At any time
point t within its lifetime, each responder carries a behavioral
distribution, which can be represented by the vector

p(t) = 〈p1(t), p2(t), p3(t), . . . , pn(t)〉, (1)

where pi(t) is the probability of using behavior i in response
to a stimulus encountered at time t. Note that p(t) is a proper
probability distribution, such that

n∑
i=1

pi(t) = 1. (2)

The process of learning is modeled as a change to a respon-
der’s behavioral distribution over time [i.e., p(t + 1) need not

equal p(t)]. After each interaction with a stimulus, the be-
havioral distribution is altered in a way to place more weight
on highly rewarding behaviors. In this way, the learning pro-
cess echoes the basic sentiment of Thorndike’s famous Law of
Effect:

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the situation,
so that when it recurs, they will be more likely to recur (Thorndike
[1911] 2000)

This law was formulated after a series of experiments in which
Thorndike placed various animals in uncomfortable positions
(e.g., a cat inside a “puzzle box” with various levers, pulleys,
and knobs). The animals gradually discovered a way to free
themselves from the discomfort (e.g., the cat discovers the
particular switch that opens the box). Over time, this particular
escape behavior became more and more likely to occur, a
process that Thorndike referred to as the “stamping in” of
the behavior. Thorndike held that it was rewarding behaviors
generally that were “stamped in.”

Imagine that a responder at time point t has employed be-
havior i in response to a stimulus (this behavior was chosen in
accordance with its behavioral probability distribution). Now,
assume that the payoff of this behavior is πi(t). The Law of
Effect is captured in the following way:

p(t + 1) = p(t)U(πi(t)), (3)

where U is the n × n “update” matrix

U(πi (t)) =




1 − λπi (t) 0 0 · · · λπi (t) · · · 0

0 1 − λπi (t) 0 λπi (t) 0

0 0 1 − λπi (t) λπi (t) 0

...
. . .

...
...

0 0 0 · · · 1 · · · 0

...
...

. . .
...

0 0 0 · · · λπi (t) · · · 1 − λπi (t)




.

(4)

Note that U is a stochastic matrix (each row sums to unity)
and it is the ith column of U that has no zero entries. This
way of representing learning is similar to the “linear oper-
ator” technique introduced by early mathematical psycholo-
gists (e.g., Bush and Mosteller 1955). The same process can
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be represented by focusing on the probability of any behavior
j (with j ∈ {1, 2, 3, . . . , n}) after stimulus interaction:

pj (t + 1) =




(1 − λπi(t))pj (t) if i �= j

pj (t) +
∑
k �=i

λπi(t)pk(t) if i = j . (5)

Thus, given that behavior i is used at time t and a payoff
of πi(t) is received by the responder, the probability of the
same behavior at the next point in time (t + 1) increases in
proportion to the size of the reward. Furthermore, this extra
weight is gathered from the probabilities of each of the other
behaviors. The more rewarding behavior i, the more likely it is
to occur in the future. The parameter λ gives the responder’s
“speed of learning,” that is, λ measures how dramatically the
behavioral distribution is reweighted after an interaction with
a stimulus.

Up to this point, we have described the learning process
within the lifetime of a responder (the TR time steps over which
the responder lives). In order to discuss cognitive evolution
across generations, we must specify how reproduction occurs
and the quantities inherited by any responder at its birth. For
simplicity, I assume asexual semelparous reproduction (each
offspring has a single parent from the previous nonoverlap-
ping generation). Offspring are produced in the very last time
step of parental generation (time step TR). There will be NR

responders at this time, collectively producing NR offspring
(i.e., responder population size remains constant). Any one of
these offspring has the rth responder (with r ∈ {1, 2, 3, . . . ,
NR}) as its parent with probability �r/�̄. The quantity �r

refers to the cumulative payoffs to responder r over its lifetime

�r =
(

TR−1∑
t=0

π (t)

)
e−cλr . (6)

For convenience, the subscript on π is dropped in equation [6].
The lifetime cost of learning is represented by the factor e−cλr ,
such that the cumulative payoff decreases as the cost parameter
c increases or as the learning parameter for responder r (λr )
increases. The quantity �̄ is simply the population average of
cumulative payoffs

�̄ =
∑NR

r=1 �r

NR
. (7)

The offspring inherits two components from its parent:
(i) a starting behavioral distribution p(0) and (ii) a “speed of
learning” parameter λ. Note that if a parent teaches its offspring
what it has learned, then a form of Lamarkian inheritance ap-
plies with poffspring(0) = pparent(TR). While such cultural inher-

itance is extremely interesting, here I focus on the case where
the initial behavioral distribution of an offspring resembles
the initial behavioral distribution of its parent [i.e., poffspring(0)
resembles pparent(0)]. In this case, the genotype of responder
r (Gr ) is the set of its initial behavior distribution and speed
of learning parameter: Gr ≡ {pr (0), λr}. This genotype also
defines the cognitive strategy of the responder.

The inheritance process does not involve perfect fidelity;
that is, mutations in inherited quantities can occur. Imagine
the parent has genotype Gj = {pj (0), λj}, with

pj (0) = 〈pj,1(0), pj,2(0), pj,3(0), . . . , pj,n(0)〉, (8)

where pj,i gives the probability that individual j uses behavior
i in response to the stimulus. The offspring’s genotype Gk =
{pk(0), λk}. The offspring’s speed of learning is

λk =




min(max(λj + δλx, λmin), λmax)
with probability µλ

λj

with probability 1 − µλ

, (9)

where µλ is the probability that a mutation in the λ parameter
occurs, δλ is the maximum mutational difference between a
parent and an offspring in the λ parameter, λmin and λmax are
the minimum and maximum λ parameters possible for any
individual, respectively, and x is a random variable (x ∼ Unif
(−1, 1)). In order to find the offspring’s behavior distribution,
consider the following weights:

qk,i(0) =




min(max(pj,i(0) + δpx, pmin), pmax)
with probability µp

pj,i(0)
with probability 1 − µp

, (10)

where the parameters µp, δp, pmin and pmax have meanings
similar to those described above for µλ, δλ, λmin and λmax

respectively. The offspring behavioral distribution is given by

pk,i(0) = qk,i(0)∑n
i=1 qk,i(0)

. (11)

To summarize the mutational process, when the mutational
probabilities (µλ and µp) are small, the offspring is likely to
resemble its parent exactly in its speed of learning and initial
behavior distribution. As these mutation probabilities increase,
it becomes more likely that the offspring will deviate in these
quantities from its parent (although with small δ values, there
will still be a tight parent–offspring correlation).
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This representation of responders is broad enough to cap-
ture several phenomena of interest as subcases. For instance,
consider a case where responder r is born with an uneven be-
havior distribution in which one behavior (i) initially carries
nearly all the weight (e.g., pr,i(0) ≈ 1 and pr,j (0) ≈ 0 for all
j �= i) and learning is very slow (λr ≈ 0). This organism would
exhibit one form of innate behavior (a stereo-typed response
to a stimulus that is present from birth and not altered by expe-
rience). On the opposite side of the spectrum, consider a case
where responder r is born with an even behavioral distribution
(e.g., pr,i(0) ≈ 1/n for all i) and learning is faster (λr > 0).
This organism would exhibit a flexible learning approach (re-
sponse to stimuli would change through time in response to
payoffs received).

Representation of Stimuli
There is a total of NS stimuli in the simulation. While each
responder can control the way that it behaves, we assume
that each stimulus controls the payoff of each responder
behavior, both to the responder and to the stimulus. If re-
sponder r uses behavior i in response to stimulus s at time
point t, the payoffs to the responder and stimulus are denoted
by πi,s(t) and φi,s(t), respectively. We assume that there is
some functional relationship between responder and stimulus
payoff:

φ = f (π ). (12)

For instance, if f is a monotonic decreasing function (∂f /∂π <

0), then there is an antagonistic relationship between respon-
ders and stimuli (behaviors that are highly rewarding to the
responder are not rewarding to the stimulus and vice versa).
If f is a monotonic increasing function (∂f /∂π > 0), then
there is a mutualistic relationship between responders and
stimuli (behaviors that are highly rewarding to the respon-
der are highly rewarding to the stimulus and behaviors that are
less rewarding to the responder are also less rewarding to the
stimulus).

The stimulus does not control the shape of f (although see
the Discussion); however, the stimulus does define the value
of responder behaviors (and thus how these same behaviors
pay off to the stimulus itself through the function f). To make
this map explicit, let πmin and πmax denote the minimum and
maximum payoff to a responder respectively. The following
set is n evenly spaced values within the interval [πmin, πmax]:

P =
{
πmin, πmin + πmax−πmin

n − 1
, πmin + 2(πmax−πmin)

n − 1
, . . . ,

πmin + (n − 2)(πmax − πmin)

n − 1
, πmax

}
. (13)

Let the set of behaviors be

B = {1, 2, 3, . . . , n − 1, n} . (14)

The stimulus controls the one-to-one map:

� : B �→ P. (15)

Note that there are n! possible � functions (or “evaluation
functions”). Stimulus s is born with one of these evaluation
functions (�s) such that responder r using behavior i in re-
sponse to this stimulus receives the payoff

πi,s(t) = �s(i), (16)

and the stimulus receives the payoff

φi,s(t) = f ◦ �s(i), (17)

where “◦” represents functional composition. Because the
evaluation function �s “belongs” to stimulus s, the stimulus
controls the payoff structure corresponding to the behaviors
used by the responder.

Asexual reproduction is assumed for stimuli. Offspring
are produced in the very last time step of the parental
generation (time step TS). There will be NS stimuli at
this time, collectively producing NS offspring. Any one of
these offspring has the stimulus s (with s ∈ {1, 2, 3, . . . ,
NS}) as its parent with probability �s/�̄. The quantity
�s refers to the cumulative payoffs to stimulus s over its
lifetime

�s =
TS−1∑
t=0

φ(t). (18)

For convenience, we have dropped the subscripts on φ in equa-
tion [18]. The quantity �̄ is simply the population average of
cumulative payoffs

�̄ =
∑NS

s=1 �s

NS
. (19)

The offspring inherits its evaluation function from its par-
ent (�). As before, the inherited function is susceptible to
mutation. Imagine the parent has genotype �j (the stimulus
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genotype is completely specified by its � function). The off-
spring’s genotype is �k , where

�k =
{

�j ◦ 	y with probability µ�

�j with probability 1 − µ�

, (20)

where µ� is the probability that a mutation in the � function
occurs, and 	 is a permutation function on the set of behaviors
(	 : B �→ B). In principle, 	 could be any one of the n! permu-
tation functions; however, here we focus on the subset of such
functions that involve exchanging two behaviors in B. There
are ( n

2 ) such functions, which can be arbitrarily labeled 	1,
	2, 	3, . . . , 	

( n
2 )

. Finally, y is a discrete random variable with

y ∼ Unif(1, ( n

2 )). To summarize stimulus mutation, when the
mutational probability (µ�) is small, the offspring is likely to
resemble its parent exactly in its evaluation function (�) of
behaviors to payoffs. As this mutation probability increases,
the offspring will be more likely to deviate slightly in its map.

Overall, a responder can alter the behavior it uses in re-
sponse to a stimulus (through experience during its lifetime and
through mutations in learning parameters over generations)
while the stimulus can alter the value of the behavior (through
mutations in its evaluation function over generations). Thus,

Table 1. Model parameters.

Parameter, Variable or Function Description Value or Range of Values

NR Number of responders 500
NS Number of stimuli 500
TR Number of time steps in the lifetime of a responder 100
TS Number of time steps in the lifetime of a stimulus 5–5000
n Number of behavioral responses in the repertoire of a responder 5
pi (t) Probability a responder uses behavior i at time t (can change through learning) 0.001–0.999
µp Probability of a mutation in the pi (t) variables of responders during birth 0.1
δp Mutational displacement “distance” in the pi (t) variables 0.005
λ The “speed of learning” of a responder (how quickly pi (t)’s are reweighted) 0.001–0.999
c Parameter measuring how costly learning is over the responder lifetime 0.3
µλ Probability of a mutation in the λ variable of responders during birth 0.0–0.1
δλ Mutational displacement “distance” in the λ variable 0.005
� “Evaluation function” of a stimulus (which maps responder behaviors to

payoffs)
n! possible

µ� Probability of a mutation in the � function of stimuli during birth 0.1

� A permutation function that flips two elements in an ordered set of n
elements

(
n
2

)
possible

πi (t) Payoff to a responder for using behavior i at time t (this depends on its
stimulus’ �)

0–1

� Cumulative payoff to a responder over its lifetime 0–TR

φi (t) Payoff to a stimulus when responder uses behavior i at time t (this depends
on stimulus’ � and f )

0–1

� Cumulative payoff to a stimulus over its lifetime 0–TS

f Global function giving the relationship between responder payoff and
stimulus payoff

φ = f (π ) = 1 − π

or φ = f (π ) = π

this model captures a true coevolutionary relationship between
the responder and stimulus. From the responder’s point of view
it inherits not only its cognitive strategy from its parent, but
also an affected stimulus pool. That is, the niche construction
of the parental responder population leaves an ecological sig-
nature (in terms of an affected stimulus pool) that can impact
the responder offspring. The effect of this “ecological inheri-
tance” on the evolution of the cognitive strategies is the focus
of this model.

Basic Question
The central aim is to explore the effects of niche construction
on cognitive evolution. Using the simulation model described
above, I focus on how the nature of the relationship between
the stimulus and responder (the antagonism or mutualism
given by the f function above) affects the evolved cognitive
strategy.

Results

Using the parameters in Table 1, I consider the evolution of
the initial behavioral probability distribution of the responder
[i.e., p(0), the distribution with which the responder is born]. It
turns out that the nature of the relationship between the stim-
ulus and responder (the form of the f function) has qualitative
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Figure 1.
Example runs of responder evolution. Over 2000 generations (of 100 time steps each), the evolution of the initial behavioral distribution of the responder
population is tracked. For all graphs we show the average weight attached to each behavior in the responder population. Model parameters are as listed in Table
1 (with TS = 100 and µλ = 0.1). (a) Evolution given antagonism between stimuli and responders (here the payoff to stimulus decreases linearly with the payoff
to responder: φ = f (π) = 1 − π). The population of responders is initiated with a uniform initial behavioral probability distribution in the first generation. (b)
Evolution given mutualism between stimuli and responders (here the payoff to stimulus increases linearly with the payoff to responder: φ = f (π) = π), starting
again with a uniform initial behavioral probability distribution. (c) Evolution given antagonism as in part a, however, we initialize with an uneven distribution
(that is similar to the evolved distribution found in generation 2000 of part b). (d) Evolution given mutualism as in part b, however, we initialize with the same
uneven distribution used in part c.

effects on the course of evolution of initial behavioral tenden-
cies. Figures 1a and 1c track the evolution of the responder’s
initial distribution given an antagonistic relationship between
the stimulus and responder. Specifically, f is decreasing and
thus behaviors highly rewarding to the stimulus are not highly
rewarding to the responder and vice versa. Here, the initial be-
havioral distribution evolves into a near-uniform distribution.
That is, all five behaviors in the repertoire of our responder
are equiprobable responses to the stimulus at the time of the
responder’s birth (see Figure 2a). Figures 1b and 1d show the
evolution of the responder’s initial distribution given a mutu-
alistic stimulus–responder relationship. Here, f is increasing
and thus the most rewarding behaviors to the stimulus are also
most rewarding to the responder. In this case, one behavior
evolves to possess nearly all the weight in the distribution
at birth. That is, the responder is born with a single highly
probable response to the stimulus (see Figure 2b).

Why do antagonistic stimulus–responder relationships fa-
vor the evolution of flat distributions at birth (favoring future
adjustments through learning) and mutualistic relationships
lead to skewed distributions at birth (favoring relatively rigid
behavior)? In the case of antagonistic relations, if any respon-
der behavior is more probable at its birth, there is selection for
stimuli with an evaluation function (�) that maps this more
probable behavior to the highest payoff for the stimulus. How-
ever, due to the antagonistic relation, what is good for the stim-
ulus is bad for the responder (i.e., the highest stimulus payoff
is simultaneously the lowest responder payoff). Thus, as the
selected stimulus increases in frequency, the responder with

an in-born behavioral preference is selected against. The result
of this antagonistic coevolution is that the responder does not
evolve behavioral preferences at birth (Figure 2a). Different
starting conditions in the simulation produce the same evolu-
tionary result in this case (compare Figure 1a to 1c). In the
case of the mutualistic relation, whichever behavior is best for
both stimulus and responder is weighted heavier and heavier,
favoring both the rewarding stimulus and the responder with
the skewed distribution simultaneously. This positive feedback
leads to a situation where the responder is born with a behav-
ioral distribution extremely skewed toward a single behavior
(Figure 2b). Again, different starting conditions of the simu-
lation lead to the same basic result (compare Figure 1b to 1d).

At this point, it is helpful to consider the diversity of
the stimulus pool under different stimulus–responder rela-
tionships. Stimulus diversity is measured using the Shannon
index:

H = −
n!∑

i=1

γi ln γi, (21)

where γi is the frequency of evaluation function �i in the stim-
ulus population. Thus, this is a measure of genetic diversity
of the stimuli in the context of this simulation (as � is the
genotype of a stimulus). Figure 3a shows that the stimulus
pool is less diverse under mutualism than antagonism. This
difference reflects the different feedbacks of the responder’s
niche construction in each case. Specifically, the responders
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Figure 2.
The outcome of responder evolution. The average initial behavioral probability
distribution of each of 10 separate simulation runs is recorded at generation
2500. For convenience, the behaviors are always reordered from the behavior
with the most weight (behavior rank 1) to the behavior with the smallest weight
(behavior rank 5). The average across 10 runs is shown (and error bars give the
standard error of the mean). Model parameters are as listed in Table 1 (with
TS = 100 and µλ = 0.1). a Evolutionary outcome given antagonism between
stimuli and responders (φ = f (π) = 1 − π). b Evolutionary outcome given
mutualism between stimuli and responders (φ = f (π) = π).

have generated a relatively constant stimulus landscape when
there are shared interests. The Goldilocks principle predicts
that when the environment of learners is constant, the learning
process should be usurped by a fixed response. And indeed
a relatively stereotyped response (at birth) evolves under mu-
tualism (Figure 2b). Naı̈vely, we might thus expect slow or
no learning (low λ) given mutualism and more rapid learning
(higher λ) given antagonism. It turns out that we find just the
opposite (Figure 3b). Even though costly, fast learning is actu-
ally a very good way to catch a static target (see Papaj [1994]
for a discussion of this point). When dealing with mutualistic
stimuli, the responders produce this constancy.

We can explore this finding further by running some addi-
tional mutualism simulations. For these additional runs, we fix
the speed of learning at a low value and do not allow it to mu-
tate (µλ = 0). We start our responders with a uniform initial
behavioral distribution and track responder evolution across
generations. We find that the time to evolve the characteristic
skewed response of Figure 2b (where one behavior has at least
75% of the weight at birth) is smaller when learning is fixed
than the case where mutation in learning speed is permitted
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Figure 3.
Diversity of stimuli and responder learning evolution. Model parameters are
as listed in Table 1 (with TS = 100 and µλ = 0.1). The “antagonistic” runs as-
sume the payoff relationship φ = f (π) = 1 − π while the “mutualistic” runs
assume the payoff relationship φ = f (π) = π. a The Shannon index of diver-
sity (H) of stimuli is calculated for each of 10 simulation runs at generation
2500. The average across 10 runs is shown (and error bars give the standard
error of the mean). b The average evolved learning parameter (λ) of each of
10 simulation runs is recorded at generation 2500. The average (of mean λ)
across 10 runs is shown (and error bars give the standard error of the mean).

(see Figure 4). That is, learning actually slows this adaptation
process.

The “Baldwin effect” refers to cases in which a trait that is
originally ontogenetically acquired, e.g., through learning or
phenotypic plasticity, becomes “genetically fixed” (see Bald-
win [1896]; Hinton and Nowlan [1987]; Ancel [1999]). Here
we see that our responder can achieve high fitness through
learning before in-born tendencies in behavior evolve. Respon-
ders eventually evolve behavioral tendencies that resemble the
skewed distributions produced by learning; thus, there is an
element of Baldwin’s effect in our model. However, unlike
some learning models (e.g., Hinton and Nowlan 1987), we do
not observe a “Baldwin Expediting Effect” (see Ancel [2000])
in which learning speeds up the evolutionary attainment of an
optimal genotype (in our case a highly skewed behavioral dis-
tribution). Learning is favored in a constant world, but it slows
“innate” behavioral adaptation in the process. In the case of
stimulus–responder mutualism, it is the responders themselves
that contribute to the very basis of this constancy.

Given antagonism between the stimulus and respon-
der, the responders construct a diverse stimulus pool (see
Figure 3a). As a consequence, any responder will interact
with functionally different members of the stimulus population
across its lifetime. That is, the payoff for using behavior i at
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Figure 4.
The role of evolvable learning in the time to adapt. Model parameters are as
listed in Table 1 (with TS = 100) and all runs assume a mutualism between
stimuli and responders (φ = f (π) = π). Here we measure the time (in gen-
erations) for one behavior to evolve 75% of the weight (in the average initial
behavioral probability distribution of responders). As shown in Figure 1, mu-
tualistic relations between responders and stimuli favor an initial behavioral
distribution where one behavior has nearly all the weight. We run 50 separate
simulations under a case where learning cannot evolve (µλ = 0.0) and where
learning can evolve (µλ = 0.1). In all 100 simulations, the value of λ at the
first generation is set at 0.01 (a relatively low value, see Figure 3b) and the
initial behavioral distribution at the first generation is set to be uniform. The
average time to adapt across 50 runs is shown (and error bars give the standard
error of the mean).

time step t can be different from its payoff at time step t+1 if
the members of the stimulus population experienced at these
time points differ in their evaluation functions. By making its
stimulus pool more heterogeneous, the responder makes the
learning process less reliable. In such a case, responders that
reweight their behavioral distribution dramatically after inter-
acting with a rewarding stimulus (responders with a high λ)
are selected against.

The above intuition about the cognitive effects of
responder-induced variability in stimuli can be checked
in another way. While any responder may interact with a
heterogeneous set of stimuli across its lifetime, the pool of
stimuli only changes when the stimuli reproduce. Thus, we
can explore a separate contributor to stimulus reliability: the
stimulus generation time. Keeping the responder generation
time (TR) constant, we vary the stimulus generation time
(TS) from cases where many stimulus generations occur with
every responder generation (TS � TR) to cases where only a
fraction of a stimulus generation occurs with every responder
generation (TS � TR). In Figure 5 we see that the evolved
speed of learning tends to increase with the TS/TR ratio.
When the stimulus generations are short, quick learners get
abused within their lifetimes by a new generation of exploiting
mutant stimuli. This tends to select against fast learning when
the TS/TR ratio is small. When the responder population has
several generations with the same stimulus pool (the TS/TR

ratio is large), faster learning can be selected.
According to the Goldilocks principle, we might expect

intermediate rates or changeability (e.g., intermediate stim-
uli diversity or intermediate stimulus generation times) to
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Figure 5.
The role of stimulus generation time on the evolution of learning. Model
parameters are as listed in Table 1 (with µλ = 0.1). The “antagonism” runs
assume the payoff relationship φ = f (π) = 1 − π while the “mutualism” runs
assume the payoff relationship φ = f (π) = π. The average value of the learn-
ing parameter (λ) is recorded at generation 2500. Different stimulus generation
times are simulated (ranging from 5 time steps to 5000 time steps), while the
responder generation time is held constant at 100 time steps. For each stimulus
generation time value, 10 simulations are executed. The average (of mean λ)
across 10 runs is shown (and error bars give the standard error of the mean).

favor the strongest forms of learning. Instead we find that
stronger forms of learning continually evolve as the change-
ability of the stimulus landscape drops (as stimulus diversity
decreases and as stimulus generation time increases). As be-
fore, we see that the Goldilocks principle paints an incom-
plete picture of cognitive evolution in the presence of niche
construction.

Discussion

In an elegant experiment, Mery and Kawecki (2002) explored
evolution of learning in fruit flies in real time. Within each gen-
eration in their treatment, they paired one of two fruit flavors
with an aversive chemical cue (quinine) during a “learning
trial” and then removed this cue during subsequent “selection
trials” in which flies could choose to oviposit in agar with
either fruit flavor. They picked eggs from the flavor not pre-
viously associated with quinine for the next generation. The
flavor paired with quinine alternated between generations and
control populations lacked quinine altogether. These authors
found that experimental flies evolved preferential egg laying in
the flavor not paired with quinine. Specifically, they found that
under the experimental treatment, flies evolved a faster rate
of learning, a longer memory, and a pronounced conditioned
response in avoiding a flavor paired with an aversive cue.

In this remarkable experiment, the stimulus (quinine) was
unaffected by the behavior of the flies. Rather, the experi-
menters completely controlled the context and reliability of
this cue. Thus, cognitive evolution in this experiment does
not involve the type of niche construction considered above.
Indeed, general exploration of cognition within the psycho-
logical sciences has been devoid of niche construction. For
instance, as rats learn to solve a maze (Tolman 1948) they do
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not alter the topology of the maze itself, and as a cat discov-
ers a way out of its puzzle box (Thorndike [1911] 2000) it
does not alter the state of the box for the next trial. In all of
these cases, the world of the learning organism is taken to be
(or experimentally forced to be) unaffected by the learner’s
actions.

Similarly, in the theoretical literature on cognitive evolu-
tion, the environment of the cognitive agent is often taken to be
unresponsive to the action of the agent. And then the evolution
of different cognitive strategies is taken to be a function of
different environmental properties. One reason for these ex-
ternalist perspectives is quite straightforward: it is simpler to
deal with a one-way causal arrow flowing from environment
to agent. In this view, it is the autonomous properties of the
environment that explain the cognitive properties of the agent.
Niche construction complicates this simple causal picture by
making the properties of the environment partially dependent
on properties of the agent. A causal loop is introduced, where
an organism is both affected by and affects the environment
(Lewontin 1978, 1982, 1983; Odling-Smee et al. 1996, 2003;
Laland and Sterelny 2006).

Given its inherent complexity, is it worthwhile to intro-
duce niche construction in attempts to understand cognitive
evolution? In this article, I have tried to make the case that
a consideration of niche construction leads to a new per-
spective on cognition. Ironically, part of the case for niche
construction is made by the externalist models for cogni-
tive evolution. These models have shown that the properties
of the environment (e.g., the reliability and heterogeneity of
stimuli) will influence the optimal cognitive strategy. Thus,
it would seem to follow that if the behaving agent can in-
fluence these stimuli properties, then its actions could feed
back to alter the evolutionary course of its cognitive strategy.
Here I have explored how the nature of the feedback affects
cognitive evolution. Positive niche construction (where behav-
ior rewarding to the agent selects for the rewarding stimulus)
and negative niche construction (where behavior rewarding to
the agent selects against the rewarding stimulus) turn out to
have qualitatively different consequences for the evolution of
cognition.

One element of cognition affected by the nature of the
stimulus–responder relationship is the proclivity of the re-
sponding organism toward certain behaviors in response to the
stimulus. Given that the above model allows the behavioral
preferences at birth to evolve, there is the potential for com-
ments on a classic dichotomy: innate versus learned behavior.
In reality, the distinction between these categories is not crisp
(see Mameli and Bateson [2006] for a full discussion) and
upon closer inspection, potential examples within each cate-
gory contain elements often associated with the other (e.g., the
process of learning can sometimes be relatively rigidly con-
strained; see Gould and Marler [1987]). Regardless of these

issues, I will tentatively make a few comments on the innate-
learned dichotomy.

In the context of the model, cases where the responder and
stimulus have shared interests (a positive f function), a highly
skewed behavioral probability distribution at birth evolves.
Thus, the organism is “born ready” to behave in a specific way
in response to the stimulus and this tendency is resilient to ex-
perience with different behaviors. This situation matches some
definitions of “innate behavior” fairly closely (e.g., Tinbergen
1989). It is fairly interesting that many (but, by no means, all) of
the so-called innate behaviors studied by the early ethologists
involved cases where the responder and stimulus possess some
common interests. For instance, much of this early literature
explores behavior involved in parental care of offspring (e.g.,
egg-rolling behavior in the gray lag goose and feeding strate-
gies in digger wasps), offspring reaction to a feeding parent
(e.g., bill pecking in herring gull chicks and gaping in thrush
nestlings), and courtship and mating (e.g., the courtship cer-
emonies of grayling butterflies, claw-waving courtship in the
fiddler crab, and female spawning in response to male “quiv-
ering” in three-spined sticklebacks) (see Tinbergen [1989]).
Indeed, mate recognition and copulation behavior have been
called largely innate (Dukas 1998). In these cases, the respon-
der’s stimulus is an offspring, a parent, or a mate, and thus
some degree of shared interest is certainly plausible. In the
context of the model, the positive niche construction is ex-
pected to feed back to favor stereotyped behavior. (Note that
when the stimulus and responder are conspecifics, the model
would have to be altered slightly—e.g., the explicit incorpora-
tion of bi-parental inheritance and the specification of genetic
linkage between stimulus properties and responder properties).

On the other hand, cases where the responder and stimulus
have antagonistic interests (a negative f function), a flat behav-
ioral probability distribution at birth evolves. Some examples
of this type of relationship would include predators and their
prey or hosts and their parasites. In these cases, the responder
“keeps its options open” and within-generation experience can
potentially alter this behavior. In the context of the model, the
negative niche construction is expected to promote flexibility.

As our model is extremely simple, the above conclusions
should be taken as tentative and there are caveats that de-
serve attention. The stereotyped behavior that is expected to
evolve under mutualistic stimulus–responder relationships as-
sumes that all stimuli possess “good intentions.” In fact, a
highly stereotyped response to a stimulus may constitute an
“Achilles heel” of the responder if a stimulus evolves to take
advantage of the in-born behavioral tendency. For instance, fe-
male fireflies of the Photuris genus prey upon male fireflies of
the Photinus genus by producing flashing patterns that mimic
species-specific mating signals (Lloyd 1965; Michaelidis et al.
2006). For the Photinus firefly, this is a case where a “good
stimulus” (indicating a mate) has “gone bad” (luring it to a
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predator). The possibility of opportunistic antagonism may af-
fect the degree to which stereotyped behavior evolves. Also,
such pressures may contribute to the complexity of the stim-
ulus and response (e.g., several intricate back-and-forth steps
in a courtship ritual) with the idea being that more complex
stimulus–response relations are harder to exploit.

On the flip side, there may be cases where fundamen-
tally antagonistic relationships produce rigid behavior. One
category of particular note includes escape behavior (Dukas
1998; Tinbergen 1989). When the cost of a poor behavioral
response is death, it is reasonable to expect the prey to pref-
erentially exhibit behavior carrying a positive probability of
escape (even if such behavior is otherwise costly). In the con-
text of the model, certain behaviors (escape behaviors) would
always map to low but consistent payoffs in response to the
predatory stimulus, whereas other behaviors could vary de-
pending on the stimulus individual. Note that our model did
not fix any responder behaviors to yield consistent payoffs.
With this adjustment to the model, there should be selective
pressure to evolve escape tendencies (of course, there would
always be pressure for the predator to evolve to exploit these
tendencies and make the formerly safe behaviors unsafe again).
Generally, however, predator–prey relations potentially exhibit
asymmetry, in that the benefits and costs of predatory behavior
versus escape behavior can be very different. An unsuccessful
predatory behavior means a lost meal for a predator, whereas
an unsuccessful escape behavior means the prey item becomes
a meal. This means that predators may be better able to afford
behavioral flexibility. Thus, predators (more often than their
prey) may exhibit the open and adaptable behavioral distribu-
tions we find in the antagonistic stimulus–responder scenario
above.

How is the nature of the stimulus–responder relationship
predicted to affect the responder’s learning process? Interest-
ingly, the highest rates of learning (the parameter λ) occur un-
der mutualistic stimulus–responder relationships. In a world
where a given behavioral response produces a consistently
high payoff (due to positive niche construction), learning that
behavior quickly is selected. Under mutualistic relations, an
apparent paradox presents itself: the responder evolves not
only a highly skewed initial behavioral distribution (an in-
nate response), but also a high rate of learning. However,
this paradox is resolved when one sees that the skew in the
in-born behavioral distribution and the learning process ac-
complish the same end: guiding the organism to a behavior
that simultaneously rewards it and the stimulus (see Papaj
[1994]). Indeed, Mery and Kawecki (2004) found that fruit
flies evolved improved learning over many generations where
the same behavioral response was constantly favored. Un-
der mutualistic relations, the responder selects for a constant
world—specifically, the most rewarding stimuli are selected.

This leads to a reliable world, or what Sterelny (2003) calls
transparent.

Such transparency is the critical feature of Stephens’
model for the evolution of learning (Stephens 1991). Stephens
suggests that the reliability needed to favor learning must op-
erate within generations. If stimuli are unreliable at this time
scale and if learning is costly (as it is in our model), then
learning is selected against (Stephens 1991; Kerr and Feld-
man 2003). In the case of an antagonistic relation between
stimuli and responders, the responder is continually selecting
for stimuli that do not reward the more likely behaviors. That
is, the negative niche construction of the responder makes its
world unreliable, or translucent, to use Sterelny’s (2003) term.
This translucency is apparent in the greater diversity of stim-
uli (each yielding different payoffs for some behaviors; see
Figure 3). Interestingly, even with the heterogeneity promoted
by antagonistic relations, responders evolve higher rates of
learning when a stimulus generational period lasts longer than
the responder’s generational period (see Figure 5). Thus, even
though the responder is promoting a translucent world, the
relative transparency is greater when the same set of stimuli
persist over several responder generations. This is a type of
“reliable heterogeneity” and it favors a higher learning rate
compared to the “unreliable heterogeneity” found under short
stimulus generation times.

Our model shows that the simple prediction of the
Goldilocks principle (learning is favored for intermediate rates
of environmental change) needs qualification. It is true that
learning is not favored in a completely unreliable world (and
indeed, given antagonism between the responder and stimulus,
the responder constructs such a world). However, even costly
learning turns out to be beneficial in a world that is entirely
reliable (for a stimulus–responder mutualism, the responder
makes its world reliable). This is not to say that the stan-
dard alternative to learning (innate behavior) does not evolve
in a nonchanging environment. Rather, learning may simul-
taneously evolve alongside in-born behavioral tendencies. By
making “learning” and “innate response” mutually exclusive,
the Goldilocks principle does not identify the important role
for learning in transparent environments. A responder that ex-
hibits strong behavioral tendencies at birth does evolve under
mutualistic scenarios; however, increased rates of learning are
concomitantly selected in this circumstance.

The model outlined above is very simple and there are
many potential extensions. For instance, we could explore
cognitive evolution when there are multiple stimulus classes.
Imagine that at any time point t within its lifetime, each re-
sponder carries a stimulus preference distribution, which could
be represented by the vector

x(t) = 〈x1(t), x2(t), x3(t), . . . , xs(t)〉,
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where xi(t) is the probability of responding to an individual
from stimulus class i at time t. (Note that with a total of
s classes, the responder will possess s behavioral probabil-
ity distributions). We could use a linear operator framework
similar to that outlined above to represent stimulus learn-
ing. As before, responders would affect the stimulus popu-
lation through interaction, potentially altering the frequency
and character of different stimulus classes. Phenomena such
as search image formation by predators (Bond and Kamil
2002) could be addressed under this extended model. In-
deed, it would be interesting if negative niche construction
favored the evolution of a flat stimulus preference distribution
at birth, where learning about the stimulus classes could lead
to different preferred stimulus types within the responder’s
lifetime.

Another extension of the model involves allowing the
stimulus–responder relationship to evolve. This could be ac-
complished by endowing each stimulus individual with its own
f function (which controls the nature of the relationship). In
such a case, one could explore the conditions favoring the es-
tablishment or breakdown of stimulus–responder mutualisms.
Preliminary analyses incorporating this extension suggest that
mutualistic relationships can establish in the midst of antago-
nism.

Of course, extensions and improvements to the way the
learning process is modeled could be discussed (e.g., the spe-
cific representation of memory). However, the goal here is not
to produce the most realistic picture of cognition. Rather, this
model is meant to abstract certain elements of the cognitive
process in order to investigate how niche construction could
influence cognitive evolution. As such, the model may have
applications outside of neuronal-based learning. For example,
the adaptive immune system possesses some of the properties
modeled here and certainly involves a strong form of niche
construction.

Despite applications to other systems, the central focus of
this model is a deeper understanding of the cognitive process
underlying animal behavior. We have seen that the nature of
the feedback generated by a behaving agent influences the evo-
lution of its behavioral tendencies and the way its experience
alters its future behavior. Behavior may be a particularly potent
form of niche construction; however, a full consideration of
niche construction may shed light on the evolution of behavior
itself.
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