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Abstract. A number of recent discussions have argued that George Price’s equation for rep-
resenting evolutionary change is a powerful and illuminating tool, especially in the context of
debates about multiple levels of selection. Our paper dissects Price’s equation in detail, and
compares it to another statistical tool: the calculation and comparison of average fitnesses.
The relations between Price’s equation and equations for evolutionary change using average
fitness are closer than is sometimes supposed. The two approaches achieve a similar kind of
statistical summary of one generation of change, and they achieve this via a similar loss of
information about the underlying fitness structure.
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1. Introduction

In the study of selection in structured populations, several researchers have
suggested that Price’s (1970, 1972, 1995) famous equation is a powerful and
illuminating statistical tool (Frank 1995; Hamilton 1975; Sober and Wilson
1998). What exactly is the Price equation and what does it really do? In this
paper we try to answer this question by drawing on our companion paper
(this volume). In addition, we discuss another well-known statistical approach
— that involving average (or “marginal”) individual fitnesses. We will argue

* Current address: Ecology, Evolution and Behavior Department, University of Minnesota,
100 Ecology, 1987 Buford Circle, St. Paul, MN 55108, USA



552

that Price’s approach and the average fitness approach actually have some
deep underlying similarities.

Discussion of these statistical approaches is aided by reference to different
ways of representing the selective process. In our companion paper in this
volume we develop two alternative perspectives, the individualist perspective
and the multi-level perspective. We will provide a summary of some results
from our other paper before diving into the statistics.

Consider the following life-cycle for two types of organisms, A and B,
in an infinite population. Each generation, the individuals form an infinite
number of size n groups (either randomly or non-randomly). Let f; () be the
frequency of groups with i A types in generation 7. The collection of these
f;(®)’s is the group frequency distribution, f(t). Individuals reproduce asexu-
ally and fitness (the number of copies an individual can expect) depends both
on its own type and on the composition of types within its group. Groups then
break up, the parent individuals expire, and the cycle begins again with the
offspring individuals forming the next set of groups.

There are different ways to describe “fitness” in this structured popula-
tion. The individualist perspective assigns fitness-like properties only to
individuals, using the following parameters:

~_ ) the expected number of copies of an A type
% = lina group with i A types and (n — i) B types ’
B = the expected number of copies of a B type

" 7 | in a group with i A types and (n — i) B types
Note the «y and B, are undefined. The multi-level perspective recognizes
groups as fitness-bearing entities, while simultaneously tracking how a
group’s productivity is shared between types within the group. The following
parameters are used within the multi-level perspective:

m; = total number of copies from a group with i A types,
5 = number of A copies in a group with i A types

total number of copies in a group with i A types’

Thus, r; represents group productivity, and ¢; the fraction of this productivity
claimed by A types, in a group with i A types.
Each set of parameters can be defined in terms of the other:!
i i
iaj +(m—i)p;’
GiTi (I = ¢i)m;
— Bi=—

i n—i

T =i+ (=0, ¢= (D

2

Thus, there is mathematical interchangeability between the individualist
framework and the multi-level framework. The list of «;’s and B;’s and the

o =



553

list of m;’s and ¢;’s comprise two interchangeable parameterizations of the
fitness structure of the system.

Consider the population at generation ¢, where p(f) and g(¢) are the
population-wide frequencies of A and B, respectively. Given the group
frequency distribution and the fitness structure, we can compute the frequency
of A and B in the next generation (5(¢ + 1) and (¢ + 1)). For example, using
the individualist perspective we find:

BHE+1) = Y fil)=a. 3)
i=1

n—1

B+ = 3 fiin =g, o)
=0

n

with mean individual fitness given by
! i n—i
v = () —a; i(t)—pi.
z ;f”n“ +;f() —f

The same equations can also be written from the multi-level perspective:

Apt+1) = ) filygim, )
i=1
n—1

G+ =Y OO0 - ¢, ©6)
i=0

with mean group productivity given by

7= Zf,-(t)m.
i=0

2. Averaging’

The first statistical tool we will examine uses average or “marginal” indi-
vidual fitnesses. The status of these fitnesses has been a topic of dispute in
several parts of the “units of selection” debates (Sober and Lewontin 1982;
Sober and Wilson 1998). It is easiest to approach these statistics from the
individualist perspective, but in principle they can be employed within either.
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We begin by deriving the statistics. In the derivations, the following
relations will be handy:

Nl (=)
”(”‘gﬁ(’)n’ q(n—;ﬁm —. (7
We can then rewrite equations (3) and (4) as follows:
_ Yoot fi®kta;
t+1) = =" 5(), 8
wp( ) NIGE p(1) @)
’?:1 “(t =i ;
wge+1) = 20O b ©)

Yoy fine

Equations (8) and (9) give formulas for the frequency of A and B in the next
generation by multiplying the current frequencies by a “fitness factor” in each
case. These fitness factors are, in fact, the average (or marginal) fitnesses of
the two types — w4 (¢) and wg (). They can be represented as follows:

Do fi(t);,;ai
(t) = %, (10)
o i i)y
and
n—=1l ¢ N @=i) g
wp(t) = i=0 Ji) 7P (11)

Sy i

Up to this point we have used the group frequency distribution f(¢¥) as the
basis for claims about averages. It is also possible to introduce a more explicit
probabilistic framework, and there are advantages from doing so. We intro-
duce the concept of a focal individual’s “neighborhood,” which is defined
to be the collection of all other individuals in the focal’s group besides the
focal individual (see Nunney 1985). Given a group frequency distribution,
these neighborhoods can be described statistically. If we let X be the number
of A types in a neighborhood of a randomly selected A type, then X will
be a discrete random variable. The same can be done for Y, the number of
A types in a neighborhood of a randomly selected B type. In Appendix 1
we give the distributions for these random variables. If group formation is
random, it is possible to show that both X and Y will be identically binomially
distributed.> Whether group formation is random or not, the random variables
describing neighborhoods can be used to give a compact and useful represen-
tation of average fitnesses. These representations treat average fitnesses as
expected values — the fitness of a given type in each possible neighborhood is
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multiplied by the probability of its encountering that particular neighborhood.
These results for each neighborhood are then summed to yield the expected
fitness of that type for generation ¢. More formally, in the case of the A type,

n—1

wa(t) = ) Pr{X = xjoen, (12)

x=0
which in equivalent to
wa(r) = Elox41]. 13)
Similarly, the marginal fitness of B can be written as

n—1

wp(t) = ) _Pr{Y = y}B,, (14)
y=0
or
wp(t) = E[By]. (15)

These fitnesses can be used to give an equation for evolutionary change.
For instance, the change in frequency of A, Ap, can be given as:
_ pq(Elax] — E[By])

w

Ap (16)

From this we can give a criterion for the increase in the frequency of A:
Elax1] > E[Br]. (17)

Dugatkin and Reeve (1994) and Sterelny (1996) discuss how the composition
of a type’s group (or neighborhood) might be considered part of its selective
environment (see also Alexander and Borgia 1978; Nunney 1985; Sterelny
and Kitcher 1988; Waters 1991). So, in a way, equations (12) and (14) express
the following sentiment: Given fitnesses («; or 8;) over a series of “environ-
ments,” the increase of a type will depend both on how well it does in various
“environments,” and on the probability of encountering “environments” that
are favorable to it.

Up to now, we have been using the individualist perspective to discuss
the average fitness approach. However, the statistics associated with this
approach can be obtained within the multi-level perspective as well.
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3. The Price equation

Condition (17) is a statistical criterion for increase in type A. However, it
is certainly not the only statistical criterion. In this section we will show,
as simply as possible, how to derive and use the Price equation to represent
systems of this kind.

We will do this from the multi-level perspective. We start by writing a
formula for the change in A frequency. If we subtract 7 p(¢) from both sides
of (5), we have

m(pt+1) —p) = {Z fi(t)d’iﬂi} — 7 p(t).
i=1

Using identities (7), we have

T(Api—i41) = ;fi(t) [@m -7 (;—)] :

We let p; = i/n be the frequency of A in a group with i A types. Rearranging
the above expression gives

A(Apir)) = Y [iOpiGr; — 7) + 7i(di — po)l,

i=1

or

A(AProryt) = Y i) —F)pi = Y fiOmi(pi — o).

i=1 i=1

However, since Y i, f;(t)(m; — T)p; = Y, fi(t)(mi — ) (pi — p(1)), we
have

A(Apiar)) = Y i) —7)(pi — p) = Y fi)mi(pi — ).
i=1 i=1

Dropping the subscripts, we can rewrite the above as

cov(rm, p) — E[n(p — ¢)]
- )

(18)

Ap =

Equation (18) is the famous Price equation (Price 1970, 1972, 1995) in a
slightly altered form.*
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The Price equation is useful in discussions of altruism. For our purposes
here, we will define altruism as follows; the A type is an altruist if and only
ifmip >mforallie {0,1,2,...n— 1}, and ¢; < i/n for all mixed groups.
That is, group productivity increases with the frequency of A, but A types get
less than their fair share within any mixed group. By this definition, cov(r, p)
and E[m(p — ¢)] must both be positive and the condition for altruist (A)
increase in frequency is

cov(m, p) > E[m(p — ¢)]. 19)

The covariance term in (19) measures the relationship between group
productivity and the frequency of A within the group. The expectation term
monitors average change in A’s frequency within groups. These two terms
have been interpreted as between-group and within-group components of
selective processes, respectively (Price 1972; Hamilton 1975; Sober and
Wilson 1998). Both “components” combine information about fitness struc-
ture weighted by the group frequency distribution; thus both are statistical
abstractions.

While we have developed Price’s approach within a multi-level perspec-
tive, there is no reason the exercise cannot be repeated within the individualist
framework.

4. The role of statistical summaries within each perspective

Any evolutionary model of a structured population includes a “summarizing”
step in which the outcomes of different processes are collected together.
Statistical quantities, such as means, variances and covariances, can be used
to compute these summaries. For any particular model, there will be different
summary statistics available.

Two statistical frameworks that have been used in evolutionary models
with population structure are the average fitness approach and Price’s
approach. Both of these statistical approaches can be used under either
the individualist or multi-level perspective. However, each perspective is
naturally associated with a particular way of summarizing the selective
process.

To see this, we take a closer look at the inequalities that summarize the
direction of evolutionary change. For the average fitness approach, this is
inequality (17) and for the Price approach it is (19). In the case of (17) we
see that this marginal criterion separates out the fitnesses of A and of B — the
LHS term uses «’s only and the RHS terms uses §8’s only. In the case of (19),
the Price approach does not separate out the roles of A and B, but instead
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compares 7’s and ¢’s, the group productivities and the within-group change.
(Here the separation is not complete, as the RHS includes both terms.)

In some sense, averaging does for the individualist perspective what
Price’s equation does for the multi-level perspective. Both the average fitness
formulae and Price’s equation give statistical criteria for increase of a type
and both break down the fitness structure in a way that is convenient for the
associated perspective. The average fitness formulae can be written within
the multi-level view, and the Price criterion can be expressed in individualist
terms, but in both case we then find no useful “separation” of pieces of the
fitness structure.

In a sense, the individualist perspective reveals averaging as a statistical
summary that distinguishes the roles of different individual types in the
population. The multi-level perspective, on the other hand, reveals Price’s
equation as a statistical summary that distinguishes changes at different
levels within the structured population hierarchy. When using an individu-
alist perspective, the average fitness approach is a natural summary of
a parameterization centered on individual productivities. When using the
multi-level perspective, Price’s equation is a natural summary of a parameter-
ization distinguishing group productivities from within group change. Given
these observations, it is not surprising that Price, who used a multi-level
perspective, summarized evolutionary change in terms of covariance; while
others employing the individualist perspective, including Matessi and Jayakar
(1976) and Cohen and Eshel (1976), summarized evolutionary change using
the expectations of the average fitness approach.

While each perspective is naturally associated with a specific statistical
approach, both statistical approaches share several common features. First,
since average fitnesses and Price’s statistics are summaries, there is inherent
loss of information under either statistical approach. Details of the selective
process are lost when using any descriptive statistic in lieu of a full descrip-
tion of the fitness structure and group frequency distribution. Second, in order
to compute the relevant statistics in either approach, both the fitness structure
(which could be represented using either one of the described perspectives)
and the group frequency distribution are needed. Third, since the group
frequency distribution can change generation to generation, the statistics from
either approach must be recomputed every generation.

It is important to separate statistical summaries from the full description
of the fitness structure and group frequency distribution. Our individualist
perspective is simply one way to parameterize a fitness structure (with «’s and
B’s). Our individualist perspective, in and of itself, does not make any claims
or assumptions about averages. Average fitnesses are simply one available
form of summary — one that is natural, but not essential to the perspective.
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Figure 1. (a) The group frequency distribution for Population I (this distribution is clumped).
(b) The group frequency distribution for Population II (this distribution is binomial with para-
meters n = 2 and p = 1/2). (c) The group productivities (v values) in Population I and (d)
Population II. (e) The within group split of the group productivity (¢ values) in Population I
and (f) Population II. (g) The fitness structure for Population I (o and B values) represented
within the individualist perspective (note that this structure is Class I using the terminology in
our companion paper). (h) Individual fitnesses for Population II (note that this fitness structure
is Class II).
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We might think of an «/8 parameterization plus average fitness statis-
tics as a “package.” And we could think of a 7w /¢ parameterization plus
Price’s statistics as another package. There is a type of equivalence between
these packages. However, it is a mistake to compare part of one package
with a different part of the other package. In particular, it is a mistake to
compare average fitnesses within an individualist package with the full fitness
parameterization of the multi-level package. Similarly, it would not make
sense to compare Price’s statistics to a full fitness description within the
individualist perspective.

If we are comparing the two statistical approaches themselves, we should
not expect the components of the Price equation to avoid the type of informa-
tion loss that comes with average fitnesses. This information loss is illustrated
in Figure 1. In the figure we have two populations (I and II). Each population
differs from the other in both its fitness structure (we show the fitness struc-
tures from both the multi-level perspective and the individualist perspective)
and its group frequency distribution. When the covariance and expectation
terms from Price’s equation are computed, we see that they are identical
across the two populations! Thus, the “between group” terms in the two
populations are the same and the “within group” terms in the two populations
are the same. However, we would surely not want to claim that the same
selective event took place in both populations.

In population I, we have a fitness structure that is rather hostile to the
evolution of altruism (a Class I structure, in the terminology of our companion
paper). But a clumped group frequency distribution overcomes this problem
for the altruist type. In population II, we have a fitness structure that is more
favorable to altruism. This structure is one that allows altruism to do well even
under random group formation (a Class II structure, in the terminology of the
companion paper). The group frequency distribution for population II here
is binomial. In essence, the change in the fitness structure when we move
from population I to population II is compensated by the change in group
frequency distribution, such that Price’s statistics remain unchanged.

The same point applies to average fitnesses; it is possible to describe two
populations differing in both their fitness structures and group frequency
distributions that have the same average fitness statistics. Indeed, the two
populations in Figure 1 have the same average fitness statistics as well as
the same Price statistics.> Note that this is not necessarily the case; if two
populations have the same statistics according to one of the two approaches,
that does not imply they have the same statistics from the other approach.®

In sum, we have argued that Price’s statistics and average individual
fitnesses play similar roles within two alternative perspectives. Both statistics
take the same kind of inputs — a fitness structure and a group frequency distri-
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bution — and both issue the same kind of output — a statistical summary of the
action of selection over one generation. Each statistical approach organizes
information differently, in a way that complements a particular parametiza-
tion of the fitness structure (average fitnesses with individualism, Price with
the multi-level perspective). Both approaches summarize a more complete
representation of the selective process, and are hence subject to a similar kind
of loss of information.

Appendix 1: Last member analysis

In our companion paper, we argue that the M-J proposition can be intuitively under-
stood using “last member analysis.” Suppose you are the last member to join a group
with n — 1 members, with k A types among them (k € {0, 1, 2, ... n — 1}). These
n — 1 individuals constitute your neighborhood. If ax 41 < Bk, we say that you should
choose to be a B type, whereas if ax4+1 > B, choosing to be an A type is superior.
Now, if ag+1 < Br forallk € {0,1,2,...n— 1} (aClass I structure), the last member
to join any group should always decide to be a B type. Similarly, if ox4+1 > B for
allk € {0,1,2,...n —1} (a Class II structure), the last member to join any group
should always decide to be an A type. The M—J proposition states that if groups form
randomly and the fitness structure is Class I, then B always increases in frequency,
whereas A always increases when the fitness structure in Class II. Why does the last
member heuristic agree with the evolutionary predictions of the M—J proposition?

We answer this question by returning to the random variables X and Y, which give
the number of A types in the neighborhood of a randomly picked A type and B type,
respectively.

X is a random variable with following distribution:

fear (&

Pr{X =x} = —; —
o fil)y

Analogously, if Y is the number of A types in a neighborhood of a randomly selected
B type, then it has the following distribution:

(n—y)
t -_
Pr{Y = y} = —nf;yl( ) n CER
dico i)™=
Random formation of groups implies that the group frequency distribution is
binomial (i.e. f;(f) = (;’)(p‘(t))‘(q(t))”"). Using this fact, and equations (7), we can
rewrite the probability distribution for X and simplify to obtain the following:

Pr{X = x} = (” -1 ) prgn

X
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Similarly, it can be shown that:
n—1 =y -n—1-y
Pr{Y =y} = ( y )p’q Y

That is, if groups are formed randomly, both X and Y are identically binomially
distributed (with parameters p(f) and n — 1). Thus, a randomly selected A or B
individual encounters k A types with the same probability.

This shows us why the last member heuristic works. The inequality cx4+1 > Bk
for all k € {0, 1,2, ... n — 1} entails that E[ax+1] > E[By]. And the inequality
k41 < B forall k € {0, 1, 2, ... n — 1} entails that E[ax+1] < E[By]. Thus, if
the last member should always choose to be an A type, then random group formation
implies that an A type will evolve to fixation. The same applies to B. In cases of
random group formation, information about the fitness structure (which is all that is
used in last member analysis) alone can suffice to predict evolutionary outcomes.

Appendix 2: Statistical descriptions of clumping

It is widely recognized that a “clumped” frequency distribution can be important to
the evolution of altruism. If altruists tend to interact more with altruists, while selfish
types more often encounter selfish types, the evolution of altruism becomes more
likely. The statistical frameworks we’ve discussed in this paper can be used to aid in
understanding this role of clumping.

It is useful to define a measure of how far the group frequency distribution differs
from a binomial distribution (which corresponds to random group formation). Here
is one such “clumping index,” C:

where ‘73 is the variance in A’s frequency across groups, and v> = % is the
variance in the frequency of the A type given random formation of groups. Thus, C
is a measure of how dispersed the distribution f{(¥) is relative to a binomial distribu-
tion. Positive values of C translate to “heavy-tail” frequency distributions, in which
A individuals frequently encounter A types and B individuals encounter B types.
Negative values of C translate to “heavy-center” distributions, in which the majority
of groups tend to contain even mixes of A and B types. When C = 0, f(¥) is binomial;
that is, groups form randomly.

So, if we consider the A type as an altruist, clumping allows A types to find them-
selves in environments in which they interact largely with other A’s, while B types
are encountering less favorable environments (the company of fellow selfish types).
To develop this notion more rigorously, we employ a technique used in Charnov
and Krebs (1975) (see also Wilson 1977, 1980). The number of altruists an average
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altruist possesses in its neighborhood is given by E[X] and the expected number of
altruists in a selfish type’s neighborhood is given by E[Y]. Then it can be shown that

E[X]-E[Y]=C (A2.1)

That is, our clumping index measures the difference in the number of altruists that a
randomly picked altruist can expect to see and the number of altruists that a randomly
picked selfish type can expect to see.

In order to examine the effects of clumping, as measured by C, we will use the
additive fitness scheme studied in detail by Wilson (1977, 1980, 1990), where «; =
z+d+r(i — 1)and B; =z + ri (see also Wade 1985). Here, z is the “base” fitness,
d represents the altruist’s effect on its own fitness (the donor of the altruism) and r
represents the effect of the altruism on the fitness of a recipient individual (either an
altruist or a selfish type). In order to satisfy the definition of altruism used here, we
must have d < rand d + (n — 1)r > 0. As Wilson (1977, 1980) shows, in the case of
this additive model, we have:

o2
Elax+1] = z—i—d—r—i—rn(ﬁ—}—;p),

o2
E[By] = z+rn (ﬁ—gp).

Thus, as the variance in frequency increases, we see E[ox+1] increases and E[Sy ]
decreases. Another way to see the effect of variance is to focus on the difference
E[X] — E[Y]. Condition (17) can be written as follows:

Elax+1] > E[By]
Elz+d+rX] > E[z+7rY]
t4+d+rE[X] > z+rE[Y]
d > r(E[Y]— E[X])
—d < Cr (A2.2)

Condition (A2.2) is given in a different form by Wilson (1977, 1980, 1990). High
values of af, produced by clumping make it more likely that condition (A2.2) will
hold (i.e., by increasing C). The reader may note a similarity between (A2.2) and
Hamilton’s rule, with d as the “cost,” r as the “benefit,” and C as something akin to
the “coefficient of relatedness.”’

Clumping results in more groups with mostly A or mostly B and the variance
in A frequency across groups increases. Within Price’s framework, this can have
the effect of increasing cov(sw, p) and decreasing E[7(p — ¢)] from equation (18),
which makes condition (19) more likely. Again, we consider the linear model from
above. Within the multi-level perspective, we have m; = nz + (d + (n — 1)r)i and
¢ = izHd+=Dni. e consider each term from Price’s equation, starting with the

= nzHd+m-Dr)i
covariance term:

cov(m, p) =(d+ (n — l)r)no[%.
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The other term from Price is:

Eln(p - $)] = (r — d)(n*v* — no)).
If we plug the above values for cov(m, p) and E[n(p — ¢)] into condition (19)
and simplify, we get condition (A2.2). As the variance in frequency o[% increases,
cov(m, p) increases (note that we assume d + (n — 1)r > 0) and E[z(p — ¢)]
decreases (note that we assume r > d), making (19) more likely. Thus, we can
investigate the role of clumping within either statistical perspective; in both cases,
clumping tends to favor the A type.

Notes

' Since o and B, are undefined, we cannot use equations (1) for pure groups. However, we

must have g = nfy, mn = nay, ¢g =0, and ¢, = 1.

2 Many of the mathematical results in this section can be found in other papers (Matessi and
Jayakar 1976; Cohen and Eshel 1976; Uyenoyama and Feldman 1980; Nunney 1985; Wilson
1990).

3 This can be used to give a justification for some of the methods used in our companion
paper; see Appendix 1.

4 See also Wade (1985) and Frank (1995) for a general discussion of Price’s work.

5 For both populations Elay 1] =5.25, E[By]=4.75, cov(m, p) =0.75, and E[n(p — ¢)] =
0.5. Note that E[aey +1] > E[By] and cov(r, p) > E[m (p — ¢)] and so A increases in frequency
according to relations (17) and (19).

6 However, since the change in A’s frequency will be the same regardless of the statistical
framework we use, we can show that the following must be true (using (16) and (18)):

cov(m, p) — E[n(p — )] =npq(Elax1] — E[By]).

This equality connects the two statistical frameworks. However, it is possible that two popula-
tions may have equivalent Price statistics, while differing in their average fitness statistics,
such that the above equality is still satisfied, or vice versa.

7 Equation (A2.2) also relates to Nunney’s (1985) equation (7). He calls d the “individual
effect” on selection (d is the change in fitness a selfish individual can expect if it were to
convert to altruism). Since Nunney requires a Class I structure in his definition of altruism, in
his case, d < 0. For Nunney, the force of group selection would be given by Cr. In order for
group selection for altruism to occur, this “group component” must be positive. Consequently,
anecessary condition for group selection is that C > 0 or og > 12, Thus, Nunney’s definition
of group selection requires clumping.
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