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Intracellular interactions shape antiviral 
resistance outcomes in poliovirus via 
eco-evolutionary feedback
 

Alexander J. Robertson    1, Benjamin Kerr    2   & Alison F. Feder    3,4,5 

Resistance evolution can undermine antiviral treatment. However, targeting 
antivirals to shared viral proteins could inhibit resistance evolution if 
susceptible viruses sensitize resistant ones during cellular coinfection. 
Pocapavir, a poliovirus capsid inhibitor, uses this sociovirological 
interference strategy. While susceptible viruses substantially suppress 
pocapavir resistance in cell culture, a pocapavir clinical trial found 
widespread resistance and limited clearance time improvements in treated 
participants. Here, to reconcile these findings, we present an intrahost 
eco-evolutionary model of pocapavir-treated poliovirus, which reproduces 
both in vitro interference and clinical resistance evolution. In the short term, 
high densities of susceptible viruses sensitize resistant ones, mirroring 
cell culture results. However, over multiple replication cycles, pocapavir’s 
high potency collapses viral density, reducing coinfection and enabling 
resistance evolution, as observed clinically. Because resistance suppression 
relies on coinfection, enhancing susceptible virus survival could offer 
therapeutic advantages. Counterintuitively, we demonstrate that lessening 
antiviral potency can increase coinfection, limiting resistance while also 
maintaining low viral load. These findings suggest that antivirals relying 
on viral intracellular interactions must balance immediate neutralization 
with preserving future coinfection for sustained inhibition. Explicitly 
considering the eco-evolutionary feedback encompassing viral density, 
shared phenotypes and absolute fitness provides new insights for effective 
therapy design and illuminates viral evolutionary dynamics more broadly.

Resistance evolution can undermine otherwise successful antimicrobial 
treatments if drug application permits microorganisms carrying resist-
ance alleles to expand and prevent population extinction. Implicit in 
these dynamics is that selection for phenotypic resistance also selects 
genotypic resistance, which permits the trait to carry forward into 
future generations. While such an assumption is often valid in bacterial 
populations1,2 (Fig. 1a–c), in viruses, the association between genotype 
and phenotype can be more complicated3–5. For example, both cellular 

coinfection and de novo mutation during viral replication can result 
in distinct genotypes occupying the same cell. These genotypes may 
share intracellular protein products, and as a result, a particular geno-
type may be associated, fully or partially, with the protein products of 
a different genotype6 (Fig. 1d,e).

This so-called phenotypic mixing has important implications for 
resistance evolution5,7. First, the disassociation between genotype and 
phenotype can impair selection for resistant genotypes. Consider a cell 
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compassionate use cases12,13), results from the clinic have been mixed, 
and, to our knowledge, have not led to additional trials. More generally, 
this study raises doubts about the therapeutic potential of exploiting 
phenotypic mixing.

To investigate these conflicting findings, we developed a dynamical 
model of poliovirus replication and evolution under drug treatment. 
Surprisingly, we find that a single model can reproduce the seemingly 
contradictory in vitro cell culture and clinical results via its behaviour at 
different viral densities. At high viral density, susceptible viruses mask 
the phenotype of resistant ones and suppress selection for resistance, 
as observed in cell culture. However, as successful treatment drives the 
viral density down, limited intracellular viral interaction restores the 
standard genotype–phenotype association. At this point, resistant and 
susceptible genomes associate strongly with their own phenotype, and 
drugs can efficiently select for genotypic resistance. Counterintuitively, 
this suggests that, in our model, permitting more susceptible viruses to 
survive drug application can better suppress resistance evolution and 
lead to smaller viral population sizes over time. This study provides a 
theoretical framework for evaluating viral evolutionary responses to 
therapies targeting resistance phenotypes encoded by multiple geno-
types, serves as a guide for the development of novel antimicrobials and 
dosing strategies, and highlights the importance of emergent dynami-
cal responses when exploiting virus–virus interactions in medicine.

Results
Poliovirus eco-evolutionary model
We developed a discrete-generation dynamical model that tracks 
poliovirus genotypes and phenotypes over multiple rounds of viral 
replication and analysed the model using deterministic and stochastic 
simulations (Methods; see Extended Data Table 1 for parameters). In 
brief, each generation consists of four steps (Fig. 3a):

	(1)	 Viral entry into host cells: resistant and susceptible genomes en-
ter cells as a function of their respective population sizes. Coin-
fection is more likely if viral population sizes are large relative to 
the host cell population.

	(2)	Genome replication and mutation: intracellular viral genomes 
replicate up to the cell’s burst size. Mutation can interconvert 
resistant and susceptible genotypes.

	(3)	Capsid formation: initial infecting genomes produce a pool 
of shared capsid subunits. For mixed infections, capsids are 
formed by randomly drawing 60 subunits from this pool and can 
be composed of both resistant and susceptible subunits.

	(4)	Capsid packaging: newly replicated viral genomes are pack-
aged into assembled capsids in proportion to their intracellular 
abundances.

Viruses then exit cells and pocapavir can bind and neutralize free 
virions according to their capsid phenotype. We parametrized viral 
neutralization rates based on the reduction in viral titres measured 
experimentally in pocapavir-treated populations of mixed resistant 
and susceptible cultures (see ‘Parameter inference’ section in the 
Methods). Capsids composed solely of resistant subunits survive 
pocapavir application with probability 1, while those composed of 
fully susceptible subunits survive with probability 4 × 10−4 (Fig. 3b). 
Our model recapitulates the observations of Tanner et al.6 that titres 
of resistant viruses (specifically, viral genomes encoding resistant 
subunits) decrease when coinfected alongside susceptible viruses 
when treated with pocapavir (Fig. 3c,d).

Resistance suppression is dependent on susceptible  
virus density
We first assessed the conditions under which pocapavir resistance 
evolution is suppressed during a single round of replication with poca-
pavir treatment. Specifically, we measured the change in resistance 

that contains both treatment-resistant and susceptible genotypes. If 
resistant genotypes do not associate with resistant protein products, 
those genotypes may not survive drug application, limiting their con-
tribution to future generations (Fig. 1f). Second, phenotypic mixing 
can limit the creation of resistant phenotypes themselves. If a drug 
targets an oligomeric protein product (for example, a capsid inhibitor 
that targets the capsid), susceptible proteins can act in a dominant 
negative fashion to interfere with the phenotypic expression of resist-
ance. Capsid inhibitors may neutralize chimeric capsids composed of 
both susceptible and resistant subunits if enough susceptible subunits 
are available to bind the drug. If intracellular resistant genotypes are 
rare (such as after de novo mutation of a resistant mutant), cells may 
produce few or no phenotypically resistant capsids. The presence of 
one or both of these factors could present an opportunity to treat viral 
infections while muting selection for resistance.

Exploiting phenotypic mixing to suppress resistance evolution 
while treating viral infections partially underlies the promise of the 
poliovirus capsid inhibitor pocapavir6,8. Pocapavir strongly inhibits 
poliovirus, but mutations in the genes encoding capsid subunits VP1 
or VP3 disrupt drug binding and confer resistance9,10. When resistant 
viruses are cocultured with susceptible ones and treated with pocapa-
vir, resistant genomes are packaged in chimeric resistant-susceptible 
capsids and are neutralized by the drug6. As a result, cocultured resistant 
viruses have substantially reduced viral titres compared with resistant 
viruses grown in isolation (Fig. 2a). Promisingly, pocapavir was used 
to slow disease progression in vivo in poliovirus-infected mice with no 
detected resistance evolution6. However, in a larger placebo-matched 
human clinical trial in which participants received the live attenu-
ated polio vaccine and were treated with pocapavir, the drug both 
failed to significantly reduce the time to viral clearance in three of 
four placebo-matched groups and led to resistance in nearly half of 
pocapavir-treated participants11 (Fig. 2b). While a subset of pocapavir 
recipients did clear their virus early without apparent resistance evo-
lution (and pocapavir therapy has been successfully used in certain 
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Fig. 1 | Genotype–phenotype disassociations can limit resistance evolution. 
a, In bacterial populations, resistance-conferring genotypes exist at low 
frequencies before treatment. b,c, Because genotypes are directly associated 
with the phenotypes they encode (b), drug application that selectively favours 
the survival of resistant phenotypes drives the expansion of resistant genotypes 
(c). d, In viruses, multiple genotypes (that is, resistant and susceptible) may 
coinfect the same cell via mutation or superinfection and the protein products 
they encode can mix intracellularly. e,f, The resulting chimeric phenotypes 
can be associated with either genotype (e), and even those phenotypes that 
are partially composed of resistant proteins may be susceptible to drug 
neutralization (f). Throughout the figure, red and blue represent resistant and 
susceptible variants, respectively, and yellow triangles represent antimicrobials 
that can bind to susceptible proteins.
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frequency as a function of the total multiplicity of infection (MOI—viral 
density, defined as the ratio of the total number of viruses to the total 
number of infectable host cells). We initialized simulations with the 
resistant genotype frequency set at fRes = 10−4, consistent with levels 
observed in untreated poliovirus populations6,10.

At high MOIs (MOI ≈ 102), genotypic resistance increased in fre-
quency by less than 10−3 after a single round of replication in the pres-
ence of pocapavir (Fig. 4a). These results are consistent with Tanner 
et al.6 and the logic underlying phenotypic mixing. However, this resist-
ance suppression did not extend to populations that were initialized 
at lower MOIs. At MOI ≤1, the resistant genotype frequency increased 
to more than 12% of the population in a single round of replication. 
These results can be understood in the context of the MOI control-
ling the degree of coinfection and subsequently the strength of the 
genotype–phenotype association. At high MOIs, coinfection is ubiq-
uitous and rare genotypes are not often associated with their capsid 
phenotype (Fig. 4b and Extended Data Fig. 1). However, at low MOIs, 
coinfection is rare and genotypes and phenotypes associate directly 
(Fig. 4c), allowing resistant genotypes to directly benefit from their 
encoded phenotype without interference.

We next considered that infections are dynamic processes, and 
the degree of viral suppression or proliferation in one generation may 
determine viral density in subsequent generations. If pocapavir treat-
ment drastically reduces the viral density (and consequently the total 
MOI), this may lead to conditions in which resistance can emerge. We 
therefore performed an in silico serial passaging experiment in which 
we inoculated cell populations at a high MOI (MOI of 100) with pre-
dominantly susceptible viruses (resistant genotype frequency 
fRes = 1 × 10−4). We allowed viruses to replicate and be neutralized by 

pocapavir, and seeded the surviving viruses on fresh cell populations 
over multiple generations.

Consistent with single-step experiments at high MOI, the viral 
population decreased in abundance after one round of replication in 
the presence of pocapavir (Fig. 4d). As a result, the surviving viral 
progeny infected cells at substantially reduced MOI and resistant 

genomes increased in both frequency and abundance after a second 
and third round of passaging. Once the viral population had recovered 
enough for widespread coinfection, resistant genotypes outnumbered 
susceptible ones over 100-fold, and susceptible subunits no longer 
sensitized their resistant counterparts (Extended Data Fig. 2). Rather, 
resistant viruses appeared to shield rare susceptible genomes in a 
form of socially encoded cross protection. These dynamics can be 
understood by tracking the change in MOI and resistance frequency 
on a stepwise phase diagram, initiating simulations across a range of 
initial total MOIs and resistance frequencies (Fig. 4e). Initial conditions 
with low resistance frequencies and sufficiently high MOI lead first to 
a rapid reduction in the MOI, which then permits increases in the 
genotypic frequency of resistance. Note that one way to interpret this 
sequence is that the low viral titre output in Fig. 4b is the low MOI input 
in Fig. 4c, enabling the spread of resistant viruses. Regardless of the 
initial conditions in our deterministic model (MOI > 0, fRes ∈ [0, 1]), 
resistance becomes the dominant genotype over time. Despite phe-
notypic mixing effectively suppressing resistance at high MOIs, rapid 
population contraction in response to pocapavir ultimately under-
mines that suppression.

Stochastic model replicates clinical trial outcomes
While our deterministic model can explain how resistance to pocapavir 
may have emerged in clinical trial participants despite phenotypic 
mixing, it cannot recapture the clinical trial observation that a sub-
set of pocapavir recipients clear their infections early with little to no 
resistance evolution11 (Fig. 2b). To investigate the dynamics driving the 
clinical trial clearance times, we implemented a stochastic version of the 
model in which simulated viral elements were drawn from probability 
distributions at each replication step in a finite host cell population with 
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Fig. 2 | Pocapavir-treated poliovirus outcomes diverged between cell culture 
and clinical trial settings. a, In vitro experiments by Tanner et al.6 demonstrated 
that coinfection of drug-resistant (res.) and susceptible (sus.) poliovirus strains 
suppresses the yield of resistant virus under pocapavir treatment. b, In the 
clinical trial reported by Collett et al.11, pocapavir failed to significantly reduce 
time to infection clearance compared with a placebo in three of four matched 
groups of participants administered the live attenuated poliovirus vaccine, and 
resistance was enriched in the pocapavir group. Points represent the clearance 
dates of individual trial participants and are coloured by resistance status 
(resistance in red, susceptible in blue), and grey boxes indicate dates that were 
not sampled during the trial (DPI, days post infection).
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Fig. 3 | Discrete-time model of poliovirus replication, mutation and survival 
under pocapavir treatment. a, We simulate intracellular poliovirus dynamics in 
four stages: (1) viral entry into host cells, (2) genome replication with mutation,  
(3) production of capsid subunits and (4) assembly and packaging of progeny 
virions. b, Capsid-mediated survival is modelled by culling progeny virions 
according to their capsid composition. Capsid survival probability as a function of 
the number of resistant subunits (line) was fitted from cell culture experimental 
data from Tanner et al.6 (points). c,d, Resistant viral yield under different 
intensities of susceptible virus coinfection shows a density-dependent effect 
in vitro6 (c) and in silico under our model (d). Throughout the figure, resistant 
variants are illustrated in red and susceptible variants are illustrated in blue.
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an immune system that responds to infection (see ‘Immune clearance’ 
section in the Methods). In brief, we modelled viral immune clearance 
via a non-specific, ramping innate immune response that removes 
viruses irrespective of capsid phenotype and parameterized clearance 
rate and host cell population size based on the clearance dates in the 
clinical trial placebo group. We used this model to simulate an in silico 
pocapavir clinical trial by running 93 simulations (representing 93 trial 
participants) until viral extinction. The infections were initialized with 
one susceptible virus per host cell and no resistant viruses. Pocapavir 
was administered after 24 h (three rounds of replication, n = 23) or 72 h 
(nine rounds of replication, n = 70), as in the clinical trial.

Our model broadly recaptures the clearance time and resistance 
evolution outcomes observed by Collett et al.11. Specifically, viral popu-
lations exhibit a bifurcation of outcomes, in which they clear shortly 
after pocapavir initiation (<7 days after infection) with little genotypic 
resistance, or clear later (≥7 days after infection) with widespread 
genotypic resistance (Fig. 4f). Analysis of the simulated population 
trajectories revealed that both early clearers and late clearers experi-
enced sharp population bottlenecks and low MOIs shortly after poca-
pavir initiation (Fig. 4g and Extended Data Fig. 3). In late clearers, this 
bottleneck allowed for rapid, resistance emergence according to the 
dynamics explored above, whereas in early clearers, this bottleneck led 
to stochastic extinction. Repeating clinical trials with different host cell 
population sizes led to changes in the relative probabilities of these two 
outcomes (Extended Data Fig. 4), but not their qualitative behaviour.

Collett et al.11 also observed that a greater proportion of partici-
pants treated at 24 h exhibited resistance than the 72-h treatment group 
(15/23 versus 25/70, Fisher’s exact test, P = 0.0163), which is potentially 
unexpected given that more resistant genomes are expected to exist 

after 72 h. Under certain starting conditions in our model, this pattern 
can emerge because resistant genomes produced before widespread 
coinfection can be more tightly linked to their resistant phenotype, 
counterbalancing their lower numbers (Extended Data Fig. 5). In sum, 
our model can explain counterintuitive and divergent participant 
outcomes among pocapavir recipients in observed by Collett et al.11.

Resistance cost, but not dominance effects, can change 
simulation outcomes
We tested whether variations of the fitness function—either imposing a 
fitness cost of resistance or altering the phenotypic dominance of resist-
ant subunits (that is, the number required to confer drug survival)—
affected our results. Introducing a resistance cost slowed resistance 
evolution, reduced equilibrium resistance and increased stochastic 
clearance during bottlenecks (Extended Data Fig. 6). However, this 
effect may not be clinically relevant, as pocapavir resistance mutations 
do not appear costly in cell culture6,9,10. By contrast, varying dominance 
had no qualitative effect on resistance outcomes (Extended Data Fig. 7 
and Supplementary Text 1).

Reduced drug potency can enhance long-term control of 
resistance and lower viral burden
The critical liability of pocapavir identified above is that effective neutral-
ization of the virus disrupts susceptible viruses’ abilities to interfere with 
resistant phenotypes via coinfection. We hypothesized that increased 
survival of susceptible viruses would enhance resistance suppression by 
maintaining higher rates of coinfection over time. Furthermore, because 
high viral loads follow resistance emergence, suppressing resistance 
could reduce total burden despite survival of susceptible viruses. We 
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Fig. 4 | Resistance suppression is MOI dependent, and resistance emerges if 
bottlenecks do not lead to extinction. a, Change in resistance frequency in a 
single generation (ΔfRes) depends on the MOI (initial fRes = 1× 10−4). b, At high 
MOI, rare resistant genomes are encapsidated by phenotypically susceptible 
capsids, muting genotypic selection. Although nearly all capsids are 
phenotypically susceptible, some survive pocapavir administration (a fraction 
greatly exaggerated for this cartoon), as observed in cell culture. c, At low MOI, 
viruses singly infect cells, and rare resistant genomes are encapsidated by 
phenotypically resistant capsids, enabling selection for resistance. d, Over 
multiple generations, pocapavir treatment transiently reduces viral population 
size for both resistant and susceptible genomes but leads to viral rebound of a 

primarily genetically resistant population following low population density.  
e, The discrete step phase diagram shows the joint change in genotypic resistance 
frequency and MOI from different initial conditions. Arrows are shortened by 
80% to increase legibility. The trajectory from d is overlaid in grey. f, Clearance 
dates from the observed clinical trial and one simulated clinical trial of n = 93 viral 
populations treated with pocapavir. The dashed line indicates the date of the 
earliest placebo clearance. g, Late and early clearers both experienced drops in 
resistant and susceptible viral population size with diverging outcomes following 
the population bottleneck. Throughout the figure, resistant variants are 
illustrated in red and susceptible variants are illustrated in blue.
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therefore considered the effects of hypothetically less potent drugs (or 
alternatively, lower doses of pocapavir) that permitted greater degrees 
of survival by virions with fully or partially susceptible capsids (Fig. 5a; 
see ‘Variation in drug strength‘ section in the Methods).

Reducing drug potency led to smaller gains in resistant genotype 
frequency in a single round of replication, in line with evolutionary 
expectations for weaker selective pressures (Extended Data Fig. 8a). 
However, reducing drug efficacy also led to a less rapid decline in the 
absolute number of susceptible genomes. For example, a drug with a 
100-fold reduced efficacy reduced the MOI after a single generation to 
approximately 10, whereas pocapavir reduced the MOI to substantially 
less than one virus per cell (Fig. 5b). As a result of this sustained mod-
erate MOI, genotypic resistance increased minimally (up to 0.16% of 
the population) over the next six passages while genotypic resistance 
under pocapavir reached near 100%. Because resistance remained 
suppressed, the population did not undergo full viral rebound and the 
total MOI after six passages was approximately 20 times smaller under 
the 100× less potent drug than pocapavir. This suggests that reducing 
antiviral potency can, under some circumstances, improve multiple 
aspects of viral control.

To evaluate the potential clinical implications of reducing antiviral 
potency, we simulated in silico clinical trials of 100 individuals treated 

with reduced potency drugs (Fig. 5c,d, assessed across a greater range 
in Extended Data Fig. 8b,c). We found that pocapavir had an earlier 
mean clearance time compared with the less potent hypothetical drugs. 
Reduced drug potency weakened population bottlenecks, preventing 
stochastic extinction of viral populations at small population sizes 
when treated with drugs weaker than pocapavir.

By contrast, reducing drug potency had more complex effects on 
the frequency of resistance and the sum total viral population size over 
the course of infection (Fig. 5d). Reducing drug potency by a factor of 
10 resulted in near ubiquitous resistance evolution and high viral popu-
lation sizes across trial participants. This reflects that a 10× reduced 
potency is a strong enough selective pressure to bring viral populations 
into a regime in which cells are singly infected and resistance can evolve, 
but does not cause the severe bottlenecks and stochastic extinctions 
seen with pocapavir. By contrast, reducing drug potency by a factor 
of 100× produced sufficiently gradual viral decay during initial drug 
application to allow resistant-susceptible coinfection to be durably 
maintained. While this rate of viral decay was not strong enough to 
cause stochastic extinction during bottlenecks, the sustained coinfec-
tion reduced the rate of resistance evolution and subsequently the total 
viral load compared with pocapavir. Finally, a very strong reduction of 
drug potency by a factor of 1,000× selected for almost no resistance 
evolution, but also did not restrict the viral population relative to an 
untreated control. This suggests that, while reducing drug potency can 
improve multiple important clinical metrics within the context of our 
model, not all reductions in drug potency will have favourable effects 
and there is an optimal balance between preserving susceptible virus 
and limiting total infection burden.

Discussion
In this Article, we show that a single model of poliovirus population 
dynamics and genetics can reconcile seemingly divergent outcomes 
of pocapavir treatment in cell culture6 and clinical trial settings11. 
Our key insight is that therapeutic strategies that rely on interaction 
between viruses must account for the demographic effects of thera-
peutic success. If the long-term efficacy of these therapies depends 
on the durability of intracellular interactions, lowering viral density 
through successful treatment can decrease coinfection rates and thus 
the potential for therapeutically beneficial interactions between viral 
genomes and their encoded proteins.

There is growing interest in exploiting interactions between viral 
genomes for therapy. Most efforts rely on defective genomes that 
parasitize replication-competent viruses rather than on sensitization 
mechanisms like those we model here14–16. Perhaps the most promis-
ing of these strategies are therapeutic interfering particles (TIPs—
replication-incompetent mutants that suppress replication-competent 
viruses during coinfection), because their interference can strengthen 
as their population grows. Although TIPs are an active area of inves-
tigation, Pitchai et al.17 recently demonstrated an effective proof of 
concept for using TIPs to treat human immunodeficiency virus over 
short timescales. The demographic feedback considered in our model 
highlights potential challenges with such an approach; over longer 
periods of time, if TIPs drive replication-competent viruses to near 
but not complete eradication, TIPs may lose their ability to self-renew 
and themselves become eliminated. This could ultimately lead to the 
unencumbered rebound of replication-competent viruses, especially 
in the case of a virus such as human immunodeficiency virus that can 
reactivate from a latent reservoir after TIPs have been eliminated.

If intracellular interactions are crucial for the success of these 
treatments, how can they be maintained in the face of demographic col-
lapse? In the case of TIPs, Weinberger, Schaffer and Arkin15 found that 
weaker interference between TIPs with their wild-type counterparts 
favours the long-term success of TIP therapy15. Indeed, all successful 
demonstrations of TIPs in rodents18–20 or mosquitoes20 allow sufficient 
wild-type replication to maintain therapeutic pressure in subsequent 
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maintain lower viral loads. a, We modelled hypothetical drugs 10×, 100× and 
1,000× weaker than pocapavir and plot the probability of virion survival as a 
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generations. In our model of poliovirus and pocapavir, we achieve 
sustained intracellular interaction through a similar therapeutic inter-
vention—decreasing drug intensity. Modifying drug intensity through 
dosage or administration frequency may allow more fine-tuned cali-
bration of intracellular interactions than identifying TIPs with the 
appropriate degree of interference. To be clear, this is not a clinical 
recommendation, and many important model assumptions would need 
to be rigorously evaluated in experimental settings before altering any 
therapeutic approach. However, similar strategies to prolong drug effi-
cacy by exploiting interactions between different genotypes are also 
being explored in non-virology settings. For example, in drug-treated 
bacterial1,2 and cancer21,22 populations, moderate-dose or pulsed strate-
gies can prolong competition between susceptible and resistant cells, 
thereby lowering the overall population size over time and delaying 
treatment failure.

Although these treatment strategies reckon with similar demo-
graphic dynamics presented here, they may require different medical 
and public health considerations. For example, managing disease 
severity and resistance evolution without eliminating the replicating 
population may be acceptable in cancer treatment; however, prolonged 
infections could lead to more opportunities for disease spread in the 
case of a transmissible pathogen. Furthermore, although we focused 
on virus–virus interactions causing interference in this study, there 
are other instances where these interactions may be beneficial4,7,23–26 
(Supplementary Text 2). When considering viral evolution in these set-
tings, models that bridge intra- and interhost dynamics, and consider 
positive demographic feedback loops, could be valuable.

A central assumption in our model is that the number of viruses per 
host cell is the primary driver of coinfection rate. While this assumption 
is common4,27–29, diverse viral behaviours can modulate coinfection. 
For example, the first virus infecting a cell can prevent others from 
entering in a process called superinfection exclusion30. Conversely, 
en bloc transmission, in which viruses are packaged and transmitted 
collectively, can enhance coinfection31,32. To our knowledge, poliovirus 
does not exhibit superinfection exclusion33,34, but growing evidence 
suggests that en bloc transmission31,32,35 and even shuttling of poliovirus 
by enteric bacteria36 can be common during infection. These factors 
could elevate poliovirus coinfection rates beyond what we consider in 
our model, or change which genotypes coinfect together.

Host and environmental factors could also affect the realized 
frequency of coinfection and subsequent evolutionary dynamics. We 
assume that cells are equally susceptible to poliovirus infection and 
spatially well mixed. In practice, expression of poliovirus’ primary 
receptor, CD155, varies considerably among cells37 and at different 
stages of disease38. This could concentrate virus into a smaller number 

of cells, enhancing interference, or result in certain cells that can only 
be infected by few virions, potentially allowing greater expression 
of phenotypic resistance. The organization of host cells in a tissue 
also stands to impact coinfection dynamics39. Limited viral dispersal 
could increase coinfection and therefore interference, but it might 
also concentrate resistant genomes into the tissue sections in which 
they initially arose, limiting the degree to which susceptible genomes 
could interfere with resistant spread. This effect might also vary across 
organ systems. Notably, the limited resistance evolution observed in 
pocapavir-treated mice may relate to increased viral density in neuronal 
infections6,40 relative to the gut epithelial infections of the pocapavir 
clinical trial in which resistance evolution was common. Investigating 
the importance of intrahost spatial and environmental variation is an 
important future area of research.

A second potentially important form of spatial organiza-
tion is intracellular. Many viruses, including poliovirus, form 
membrane-associated structures that can sequester viral components 
near their encoding genomes41,42. This effect could limit protein diffu-
sion and reduce phenotypic mixing. Poliovirus capsids are tethered to 
their membranes during virion assembly43, so it is possible that some 
degree of intracellular segregation contributes to our observation that 
even very rare resistant genomes in a cell impart partial phenotypic 
resistance. Despite this, Tanner et al.6 observed that phenotypically 
distinct capsid proteins intermingle in single chimeric virions, so 
the exact extent of intracellular mixing of poliovirus capsid subunits 
remains unknown. Nevertheless, the organization of viruses within 
a cell is likely to be a key determinant of therapeutic strategies built 
around intracellular resource sharing.

More broadly, our study contributes to a growing body of work 
framing viral coinfection through the lens of ploidy, drawing parallels to 
how multiple gene copies shape phenotype in cellular organisms7,44–46. 
In classical diploid genetics, a single biallelic locus can produce up to 
three phenotypes, depending on the interactions between the alleles 
(that is, the ‘dominance’ of one allele over the other). Although the fre-
quency of these phenotypes can shift between generations, the ploidy 
level itself remains fixed. Among viruses, the number of genomes that 
contribute to a phenotype can vary between host cells and dynami-
cally over the course of an infection7. The association of several viral 
genomes in a host cell can lead to more complex and varied phenotypes 
than is possible in a diploid model47. The model that we explore here 
has a classical analogue to incomplete dominance in a standard diploid 
framework, in which the addition of more resistant proteins always 
partially benefits a capsid in the presence of the drug. However, recent 
work has also described instances of apparent over- or underdomi-
nance in which coinfecting viruses have increased or decreased fitness 
relative to non-mixed infections48–51. Regardless of the exact form of 
intracellular dominance, shared phenotypes can clearly determine 
viral fitness. Because absolute fitness within a population governs 
viral density in the immediate future, it therefore impacts the degree 
of viral intracellular interaction moving forward, and thus how new 
phenotypes are realized. Therefore, viral ‘ploidy’ not only changes over 
time, but feeds back into itself (Fig. 6). Although our model centres on 
poliovirus and pocapavir, its core principles—density-driven coinfec-
tion, transient genotype–phenotype associations and demographic 
feedback with the environment—are likely to be broadly relevant for 
designing therapies that exploit the social lives of viruses, as well as 
viral evolutionary dynamics more broadly.

Methods
We developed both stochastic and deterministic versions of a 
discrete-time dynamical model of poliovirus replication that integrates 
viral entry, genome replication, mutation, capsid formation, pocapa-
vir neutralization and immune clearance. We describe the stochastic 
version here, while the deterministic version follows the same prob-
ability distributions but accounts for every possible outcome (that is, 
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Fig. 6 | Targeting viral traits affected by multiple intracellular viral genomes 
requires an understanding of eco-evolutionary feedback. Viral density 
determines the degree of intracellular interactions, which in turn shapes realized 
phenotypes, influencing absolute fitness, which then feeds back into viral density 
in the next generation.
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integrates over the distribution) rather than drawing specific values. 
Full details are provided in the Supplementary Materials and Methods. 
All simulations and analyses were performed in R, version 4.1.052. Data 
visualization was performed with the ggplot2 package53.

Viral entry
At time t, the total viral population, vtot,t, consists of rtot,t resistant and 
stot,t susceptible genomes, yielding

vtot,t = rtot,t + stot,t.

We assume that viruses are equally likely to infect any of the γ host 
cells in the population, and that there is no superinfection exclusion. 
The number of resistant and susceptible genomes entering a cell (ran-
dom variables Rinf  and Sinf , respectively) are modelled by 
binomial distributions,

Rinf ∼ Bin (rtot,t,
1
γ ) Sinf ∼ Bin (stot,t,

1
γ ) , (1)

where ~ means ‘is distributed as’. The total number of viruses that  
have infected a given cell, vinf , can be described by the equation 
vinf = rinf + sinf, where rinf  and sinf  represent realizations of the binomial 
distributions described in equation (1). Thus, on average, vinf  will equal 
vtot,t
γ

, the MOI.
We note that, in the deterministic model, rtot,t and stot,t need not be 

integers, rendering the binomial distribution undefined. We describe a 
weighted sampling scheme to circumvent this issue in the ‘Viral entry’ 
section in the Supplementary Materials and Methods.

Genome replication and mutation
For each infected cell, progeny production (Vrep) follows a Poisson 
distribution with a mean of the inferred average effective burst size, β, 
which accounts for the number of infectious particles that leave the 
cell (that is, Vrep ~ Pois(β) for vinf > 0). Replicated resistant genomes 
(Rrep) are modelled as

Rrep ∼ Bin (vrep,
rinf
vinf

) .

Given that Rrep takes on some value, rrep, the number of newly replicated 
susceptible genomes in a cell, srep, is given by

srep = vrep − rrep.

Mutation between genotypes occurs per replication event at rate 
μ = 2 × 10−5(ref. 9), so that resistant and susceptible mutants (the ran-
dom variables Rmut and Smut, respectively) are found by

Rmut ∼ Bin (srep,μ) and Smut ∼ Bin (rrep,μ) .

Given that Rmut and Smut take on the values rmut and smut, respectively, 
post-mutation genome counts per cell (rpool and spool) are then found 
as follows:

rpool = rrep − smut + rmut, spool = srep − rmut + smut.

Capsid formation
Let σ represent the number of subunits in a capsid. Each progeny 
genome is packaged into a capsid composed of 60 subunits (σ = 60). 
The number of resistant subunits per virion (the random variable I) is 
modelled binomially, where

I ∼ Bin (σ, rinfvinf
) ,

assuming that both resistant and susceptible genomes contribute 
equally to the pool of capsid subunits. The probability that a capsid 
has i resistant subunits is

pi = Pr(I = i|{vinf, rinf}),

where i takes on a discrete value between 0 and σ inclusive.
Genomes are assigned to capsids via a multinomial sampling 

process for each infected cell in the population. The number of repli-
cated resistant genomes that are packaged into a capsid with i resistant 
subunits is the random variable Rpack,i. Each Rpack,i can be collected into 
a vector Rpack, where

Rpack ∼ Multinom(rpool,p0,… ,pσ)

with analogous sampling for susceptible genomes. At this point, virions 
leave their cells and are pooled into groups according to their capsid 
subunit composition and genotype.

Pocapavir neutralization
Drug neutralization is modelled by assigning each virion a survival 
probability, ω(i, t), that depends on its capsid composition (number 
of resistant subunits i) and on the time of drug administration tpoc. 
For t < tpoc, ω(i, t) = 1 (that is, before drug application, virions are not 
affected by the drug). When t ≥ tpoc, survival is given by a scaled logistic 
function:

ω(i, t) = y0 + ( yσ − y0) ×
L(i) − L(0)
L(σ) − L(0) ,

where L(i) is the standard form of the logistic function:

L(i) = 1
1 + e−k(i−i0)

.

The variables y0 and yσ represent the survival probabilities of fully 
susceptible and fully resistant capsids, respectively, and k and i0 are 
inferred by fitting the function to cell culture survival probabilities 
from Tanner et al.6. Under drug pressure, the survival of virions car-
rying resistant genomes (the random variable Rsurv,i) is then found by 
binomial sampling rpack,i:

Rsurv,i ∼ Bin (rpack,i,ω(i, t)) ,

for each capsid subunit state (and similarly for susceptible virions). 
Rsurv,i then takes on the specific values rsurv,i. After pocapavir neutrali-
zation, the total number of resistant genomes, rsum, is calculated by 
summing across all rsurv,i:

rsum =
σ
∑
i=0

rsurv,i.

A similar sum is used to calculate total number of susceptible genomes.

Immune clearance
Following pocapavir neutralization, immune clearance is applied after 
a specified number of replications, timm, via the survival function d(t). 
For t < timm, d(t) = 1. For t ≥ timm, survival is given by an exponential decay 
function,

d(t) = e(−Iinit(t−timm)),

where the initial immune sensitivity, Iinit, is drawn from a lognormal 
distribution,

Iinit ∼ Lognormal(ξ, τ2).
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The parameters governing Iinit (timm, ξ and τ) and the host cell population 
size, γ, were inferred by maximizing the log-likelihood of observing 
simulation clearance times, given matched placebo clearance times 
from the pocapavir clinical trial reported by Collett et al.11.

The virions that survive immune clearance and carry resist-
ant genomes are represented by Rimm. This is found by binomially  
sampling rsum:

Rimm ∼ Bin(rsum,d(t)).

Note, immune clearance is considered in the stochastic model only.

Initializing the next generation
In the stochastic model, draws from Rimm and Simm represent the number 
of resistant and susceptible genomes that can infect cells in the next 
generation (that is, rtot,t+1 and stot,t+1). If the realized values of rtot,t+1 and 
stot,t+1 both equal zero, the simulation is terminated.

Variation in phenotypic dominance
To explore the impact of susceptible dominance over the resistant 
phenotype, we changed the drug neutralization function to simulate 
different relationships between resistant subunit composition and 
virion survival. Using the standard logistic function as our base, we 
used a steepness coefficient of k = 100 to simulate a step-like function, 
and varied i0 to set the inflection point, corresponding to the minimum 
number of resistant subunits needed to render a virion phenotype 
resistant to drug. Otherwise, simulations were initialized with the same 
parameters as the pocapavir simulations.

Fitness cost of resistance
We examined fitness costs of resistance through a linear fitness func-
tion in which each additional resistant subunit in a capsid was asso-
ciated with a κ decrease in virion extracellular survival probability, 
regardless of drug pressure (κ ∈ [0, 0.0165]; Extended Data Fig. 6). 
Unless otherwise noted, κ = 0.

Variation in drug strength
To explore the impact of drug strength on clinical outcomes, we scaled 
the original pocapavir fitness function such that

ω′(i, t) = y′0 +
(ω(i, t) − y0)( yσ − y′0)

yσ − y0
,

where y0 is the fitness of a fully susceptible capsid in the presence of 
pocapavir, yσ is the fitness of a fully resistant capsid in the presence of 
pocapavir and y′0 is the new survival probability of a virion composed 
entirely of susceptible subunits. Otherwise, simulations were initialized 
with the same parameters as the pocapavir simulations.

Parameter inference
Parameters were inferred by numerical optimization in R (version 
4.1.0)52. The specific objective functions varied by model and are 
described below.

Estimation of viral burst size. We inferred the effective viral burst 
size by fitting model outputs to mixed cell culture data from Tan-
ner et al.6, using matched initial MOIs. We specifically compared our 
simulated data with reported results of pure Mahoney strain PV with 
the VP3-A24V mutation in cell culture. This mutation is one of the most 
commonly observed in experiments selecting for resistance9,10 and was 
the only strain/mutation pairing for which there was a negative control 
reported in Tanner et al.6. We evaluated model fit by minimizing the 
sum of squared differences between the log values of the observed and 
simulated plaque-forming units (PFU) after one round of replication. 
Specifically, we minimized

∑
l
(log(real_pful) − log(sim_pful))

2,

where l is the set of resistant MOI and susceptible MOI coinfected pairs 
reported by Tanner et al.6. Fitted values and their empirically measured 
comparisons are reported in Extended Data Table 1.

Estimation of immune clearance parameters. Parameters governing 
immune clearance and host cell population size were estimated by 
fitting a stochastic model of infection and clearance (assuming no drug 
effect; that is, ω(i, t) = 1 for i ∈ [0,60], t ≥ 0 for all phenotypes at all time-
points) to placebo group clearance data from Collett et al.11. Because 
participants were not sampled daily, Collett et al. reported the clear-
ance date as the first sample at which no virus was detected (Fig. 2). To 
replicate this, we rounded each simulated clearance time up to the next 
available sampling day, following the trial design.

We simulated 480 placebo recipients (10× the original sample 
size) and calculated the probability of clearance on each sampled day. 
These model-based probabilities were compared with the empirical 
distribution using a multinomial log-likelihood. Specifically, after 
adding a small pseudocount to avoid log-zero issues, we computed

log L = ∑
x
nx × logpx

where nx is the number of placebo participants observed to clear on 
day x, and px is the model-derived probability of clearance on day x. If 
a simulated participant cleared after day 43 (the final sampling day), 
we could not compare this outcome with empirical data and instead 
returned a fixed log-likelihood value of 1,000 to penalize these param-
eter settings. Fitted values and their empirically measured comparisons 
are reported in Extended Data Table 1.

We note that the relevant in vivo cellular population size γ is not 
well described in the literature, and its fitted value in our optimization 
routine is sensitive to starting conditions, suggesting that it does not 
drive likelihoods. We present results with the fitted value of γ = 37,041 in 
the main text, as it broadly matches clearance outcomes in the treated 
group, with two additional γ values resulting from different optimiza-
tion initial conditions in Extended Data Fig. 4. We further analytically 
characterize the dependence of the extinction probability on γ × μ 
in the ‘In vivo cellular population size’ section in the Supplementary 
Materials and Methods and Supplementary Fig. 1.

A complete account of the model equations, parameter inference 
and simulation details is provided in the Supplementary Materials and 
Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used for the analyses are available via Zenodo at https://doi.
org/10.5281/zenodo.17458552 (ref. 54).

Code availability
Code for simulations, data analysis and data visualization is available 
via Zenodo at https://doi.org/10.5281/zenodo.17458552 (ref. 54).
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Extended Data Fig. 1 | Distribution of capsid subunit compositions following 
viral replication. For cellular populations infected by viruses with different 
frequencies of genotypic resistance (fRes ∈ {0.01, 0.1, 0.5, 0.9, 0.99}, rows) and 
at different multiplicities of infection (MOI ∈ {0.1, 1, 10, 100}, columns), we 
plot the densities of virions emerging from these cells whose capsids contain 
different numbers of resistant capsid subunits. Outcomes are plotted separately 
based on if virions contain a susceptible genome (blue) or a resistant one (red). 

Simulations were run using standard model parameters reported in Extended 
Data Table 1. At low MOIs (0.1 and 1), progeny genomes are predominantly 
encapsidated in capsids reflecting their own genotype (that is, homogeneous 
capsids). At higher MOIs (10 and 100), progeny genomes are more frequently 
encapsidated in mixed capsids due to increased coinfection. Capsid composition 
is most mixed when resistant and susceptible genotypes are present at similar 
frequencies.
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Extended Data Fig. 2 | Distribution of capsid subunit compositions over 
time in a serial passaging experiment. For each timestep in the serial 
passaging experiment shown in Fig. 4d (rows), we plot the density of capsid 
subunit compositions (that is, the number of resistant capsid subunits) for 
pre-neutralization virions based on whether they contain a susceptible (blue) or 
resistant (red) genome. The population was initialized with fRes = 10−4 and an MOI 
of 100. At t = 0, both resistant and susceptible genomes are packaged in highly 

susceptible capsids, but as the MOI drops, resistant and susceptible genomes are 
increasingly packaged in capsids matching their phenotypes. While MOI remains 
low and susceptible genomes become increasingly rare (t = 3), the phenotypic 
variance of susceptible genomes becomes large based on whether or not they 
coinfect with resistant ones. After rebound (t≥4), both resistant and susceptible 
genomes are packaged in highly resistant capsids.
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Extended Data Fig. 3 | Population dynamics of individual simulations in the 
simulated pocapavir clinical trial. For each simulated viral population in the 
pocapavir clinical trial summarized in Fig. 4f, we plot the viral density (genomes/
cell) for resistant (red) and susceptible (blue) genomes over time. We stratify 
populations into early clearers (top) or late clearers (bottom) based on if the 

clearance time was earlier that 7 days post infection (DPI) or later than or equal to 
7 DPI. As in the clinical trial, simulations were administered pocapavir beginning 
either 24 or 72 hours post infection, which causes the two asynchronous drops in 
viral density 1 and 3 days post infection.
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Extended Data Fig. 4 | Smaller host cell population sizes lead to more frequent 
early clearance in simulated clinical trials. Immune clearance parameters were 
optimized starting from three different initial host cell population sizes (15,000, 
30,000, and 60,000) and converged to values similar to their starting conditions 
(15,935, 37,041, and 68,992, respectively). The frequency of early (< 7 days, black) 

versus late (≥7 days, grey) clearance was dependent on host cell population size, 
where early clearance was more common in simulations with smaller host cell 
population sizes (n = 93 simulations). In the main text, results are shown with the 
intermediate initial conditions (γ = 37, 041).
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Extended Data Fig. 5 | Intracellular protein sharing can increase the frequency 
of resistance evolution during early treatment. Collett et al.11 found that 
a greater proportion of viral populations treated 24 hours post-infection 
developed resistance than those treated 72 hours post- infection (15/23 
versus 25/70; p = 0.0163, Fisher’s exact test). We examined the emergence of 
this behaviour using the model in this manuscript (in which genomes can be 
encapsidated by any available intracellular capsid proteins), and a model without 
intra-cellular mixing (in which genomes are encapsidated only by capsid proteins 
corresponding to their genotype). (A, B) We compared the rates of resistance 
evolution in the 24 and 72 hour treatment groups across host cell population 

sizes (γ) and initial numbers of infecting susceptible viruses (n = 150 per group 
and parameter set, fRes≥50% defined as resistant). We identified conditions in 
which earlier treatment was associated with more resistance evolution in  
the 24 hour treatment group than the 72 hour treatment group (shown in green) 
in the intra-cellular mixing model (A) but not the non-mixing model (B).  
(C-D) Example rows from (A) and (B) show the proportion of resistant infections 
in the 24 hour (green) versus 72 hour (purple) treatment groups under example 
initial conditions. Clinical resistance frequencies from Collett et al.11 at the 
24 hour and 72 hour treatment times are shown as dotted and dashed lines, 
respectively.
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Extended Data Fig. 6 | Fitness cost of phenotypic resistance impairs the 
spread of resistance and results in more favorable clinical outcomes. (A-C) We 
generated compound fitness curves that accounted for both the standard fitness 
cost imposed by pocapavir and a linear fitness cost associated with greater 
numbers of resistant subunits per virion. The fitness of a fully resistant capsid 
is noted above its respective curve. Deterministic model simulations using the 
fitness functions in A-C reveal that greater costs of resistance slow the rate of 

resistance evolution and reduce viral densities over 6 passages (initial MOI = 100, 
initial fRes = 10−4, D-F) and reduce the equilibrium values of both total MOI and fRes 
(G-I). Clinical trials simulated with the same immune parameters and pocapavir 
treatment times as in Fig. 4f, but incorporating fitness costs (κ ∈ [0, 0.0165]), 
showed earlier average clearance (J), reduced total viral loads (K), and lower 
resistance frequencies (fRes; legend in K applies to point colours in J; horizontal 
line indicates mean value, bars show ± standard deviation).
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Extended Data Fig. 7 | More ‘dominant’ drugs do not suppress resistance 
better than pocapavir. (A) We considered a hypothetical drug to which drug 
resistant capsid subunits only conferred a survival advantage if all 60 subunits 
were resistant (that is, susceptible subunits fully dominate resistant ones). We 
compared this fully dominant drug (dashed grey) to pocapavir (solid black).  
(B) In single passage simulations assessing the change in resistance frequency 
(ΔfRes) as a function of the initial MOI, the fully dominant drug suppressed 
resistance marginally better than pocapavir at high MOI (initial fRes = 10−4).  
(C) However, in a deterministic serial passage experiment, both drugs (pocapavir, 
solid; the fully dominant drug, dashed) led to similar population trajectories for 
susceptible and resistant viral densities over time. In (A-C), we considered that a 

capsid must have 60 resistant subunits to have any increased survival probability. 
We next consider how lowering that threshold to generate a resistance response 
(that is, 100% survival probability when treated with pocapavir) from 60 affects 
clinical outcomes. Five such thresholds are plotted in (D), but 2000 trials were 
run across a range of threshold values. Threshold values do not affect clearance 
date (E) or sum total viral load over the course of infection (F). Each point 
represents an individual simulation with a given resistant capsid threshold value 
to confer resistance, and points are coloured by the frequency of genotypic 
resistance observed in the simulation over the course of infection. For both 
(E) and (F), the black line shows a rolling mean and the grey ribbon shows the 
variance around the mean.
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Extended Data Fig. 8 | Reducing drug potency lowers selection for resistance 
and can maintain lower viral loads over time. (A) In single passage simulations 
assessing the change in resistance frequency (ΔfRes) as a function of the initial 
MOI, less potent drugs (10×, 100×, 1000× weaker) led to smaller increases in 
the frequency of resistance than pocapavir (initial fRes = 10−4). Note, clinical trial 
outcomes for these specific drugs are plotted in Fig. 5. We also ran 2000 clinical 
simulations exploring drugs with a range of potency reductions between 1× and 
2147× weaker. (B) Drugs weaker than pocapavir had later clearance times due to 
the reduced probability of population bottlenecks leading to early extinction. 

(C) However, we observed a non-monotonic relationship between drug weakness 
and the sum total viral load, in which drugs with intermediate weakness  
(≈ 100× weaker) best reduce sum total viral load. For both (B) and (C), each point 
represents an individual simulation with a given resistant capsid threshold value 
to confer resistance, and points are coloured by the frequency of genotypic 
resistance observed in the simulation over the course of infection (legend in 
(C)). The black line shows a rolling mean and the grey ribbon shows the variance 
around the mean.
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Extended Data Table 1 | Estimated model parameters and their associated notation, estimated values and empirical 
comparisons

Parameter estimates were obtained by fitting the model to cell culture and clinical trial data. In brief, burst size and fitness function parameters were estimated by fitting to cell culture data 
reported in Tanner et al.6, and host cell population and immune clearance parameters were estimated by fitting to clinical data from a placebo-treated group reported by Collett et al.11 (see 
‘Parameter inference’ in the Methods).
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