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Resistance evolution can undermine antiviral treatment. However, targeting
antivirals to shared viral proteins could inhibit resistance evolution if
susceptible viruses sensitize resistant ones during cellular coinfection.

Pocapavir, a poliovirus capsid inhibitor, uses this sociovirological
interference strategy. While susceptible viruses substantially suppress
pocapavir resistance in cell culture, a pocapavir clinical trial found
widespread resistance and limited clearance time improvementsin treated
participants. Here, to reconcile these findings, we present an intrahost
eco-evolutionary model of pocapavir-treated poliovirus, which reproduces
bothinvitrointerference and clinical resistance evolution. In the short term,
high densities of susceptible viruses sensitize resistant ones, mirroring

cell culture results. However, over multiple replication cycles, pocapavir’s
high potency collapses viral density, reducing coinfection and enabling
resistance evolution, as observed clinically. Because resistance suppression
relies on coinfection, enhancing susceptible virus survival could offer
therapeutic advantages. Counterintuitively, we demonstrate that lessening
antiviral potency canincrease coinfection, limiting resistance while also
maintaining low viral load. These findings suggest that antivirals relying
onviralintracellularinteractions must balance immediate neutralization
with preserving future coinfection for sustained inhibition. Explicitly
considering the eco-evolutionary feedback encompassing viral density,
shared phenotypes and absolute fitness provides new insights for effective
therapy design and illuminates viral evolutionary dynamics more broadly.

Resistance evolution can undermine otherwise successful antimicrobial
treatments if drug application permits microorganisms carrying resist-
ance alleles to expand and prevent population extinction. Implicitin
these dynamicsis that selection for phenotypicresistance also selects
genotypic resistance, which permits the trait to carry forward into
future generations. While such anassumptionis often valid in bacterial
populations’* (Fig.1a-c), inviruses, the association between genotype
and phenotype canbe more complicated®™. For example, both cellular

coinfection and de novo mutation during viral replication can result
in distinct genotypes occupying the same cell. These genotypes may
shareintracellular protein products, and as aresult, a particular geno-
type may be associated, fully or partially, with the protein products of
adifferent genotype® (Fig. 1d,e).

This so-called phenotypic mixing hasimportant implications for
resistance evolution®’. First, the disassociation between genotype and
phenotype canimpair selection for resistant genotypes. Consideracell
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Fig.1| Genotype-phenotype disassociations can limit resistance evolution.
a, Inbacterial populations, resistance-conferring genotypes exist at low
frequencies before treatment. b,c, Because genotypes are directly associated
with the phenotypes they encode (b), drug application that selectively favours
the survival of resistant phenotypes drives the expansion of resistant genotypes
(c).d, Inviruses, multiple genotypes (that is, resistant and susceptible) may
coinfect the same cell viamutation or superinfection and the protein products
they encode can mix intracellularly. e,f, The resulting chimeric phenotypes

can be associated with either genotype (e), and even those phenotypes that

are partially composed of resistant proteins may be susceptible to drug
neutralization (f). Throughout the figure, red and blue represent resistant and
susceptible variants, respectively, and yellow triangles represent antimicrobials
that can bind to susceptible proteins.

that contains both treatment-resistant and susceptible genotypes. If
resistant genotypes do not associate with resistant protein products,
those genotypes may not survive drug application, limiting their con-
tribution to future generations (Fig. 1f). Second, phenotypic mixing
can limit the creation of resistant phenotypes themselves. If a drug
targets an oligomeric protein product (for example, a capsid inhibitor
that targets the capsid), susceptible proteins can act in a dominant
negative fashion tointerfere with the phenotypic expression of resist-
ance. Capsid inhibitors may neutralize chimeric capsids composed of
bothsusceptible and resistant subunitsif enough susceptible subunits
are available to bind the drug. If intracellular resistant genotypes are
rare (such as after de novo mutation of a resistant mutant), cells may
produce few or no phenotypically resistant capsids. The presence of
oneorboth ofthese factors could presentan opportunity to treat viral
infections while muting selection for resistance.

Exploiting phenotypic mixing to suppress resistance evolution
while treating viral infections partially underlies the promise of the
poliovirus capsid inhibitor pocapavir®®. Pocapavir strongly inhibits
poliovirus, but mutations in the genes encoding capsid subunits VP1
or VP3 disrupt drug binding and confer resistance®°. When resistant
viruses are cocultured with susceptible ones and treated with pocapa-
vir, resistant genomes are packaged in chimeric resistant-susceptible
capsidsand are neutralized by the drug®. As aresult, cocultured resistant
viruses have substantially reduced viral titres compared with resistant
viruses grown in isolation (Fig. 2a). Promisingly, pocapavir was used
to slow disease progressionin vivo in poliovirus-infected mice with no
detected resistance evolution®. However, in a larger placebo-matched
human clinical trial in which participants received the live attenu-
ated polio vaccine and were treated with pocapavir, the drug both
failed to significantly reduce the time to viral clearance in three of
four placebo-matched groups and led to resistance in nearly half of
pocapavir-treated participants” (Fig. 2b). While a subset of pocapavir
recipients did clear their virus early without apparent resistance evo-
lution (and pocapavir therapy has been successfully used in certain

compassionate use cases'>"), results from the clinic have been mixed,
and, toour knowledge, have not led to additional trials. More generally,
this study raises doubts about the therapeutic potential of exploiting
phenotypic mixing.

Toinvestigate these conflicting findings, we developed a dynamical
model of poliovirus replication and evolution under drug treatment.
Surprisingly, we find that a single model can reproduce the seemingly
contradictoryinvitro cell culture andclinical results viaits behaviour at
differentviral densities. At high viral density, susceptible viruses mask
the phenotype of resistant ones and suppress selection for resistance,
asobservedin cell culture. However, as successful treatment drives the
viral density down, limited intracellular viral interaction restores the
standard genotype-phenotype association. At this point, resistant and
susceptible genomes associate strongly with their own phenotype, and
drugs can efficiently select for genotypic resistance. Counterintuitively,
this suggests that, in our model, permitting more susceptible viruses to
survive drugapplication can better suppressresistance evolution and
lead to smaller viral population sizes over time. This study provides a
theoretical framework for evaluating viral evolutionary responses to
therapiestargeting resistance phenotypes encoded by multiple geno-
types, serves asaguide for the development of novel antimicrobials and
dosing strategies, and highlights theimportance of emergent dynami-
calresponses when exploiting virus-virus interactions in medicine.

Results

Poliovirus eco-evolutionary model

We developed a discrete-generation dynamical model that tracks
poliovirus genotypes and phenotypes over multiple rounds of viral
replicationand analysed the model using deterministic and stochastic
simulations (Methods; see Extended Data Table 1 for parameters). In
brief, each generation consists of four steps (Fig. 3a):

(1) Viralentryinto host cells: resistant and susceptible genomes en-
ter cells as a function of their respective population sizes. Coin-
fection is more likely if viral population sizes are large relative to
the host cell population.

(2) Genome replication and mutation: intracellular viral genomes
replicate up to the cell’s burst size. Mutation can interconvert
resistant and susceptible genotypes.

(3) Capsid formation: initial infecting genomes produce a pool
of shared capsid subunits. For mixed infections, capsids are
formed by randomly drawing 60 subunits from this pool and can
be composed of both resistant and susceptible subunits.

(4) Capsid packaging: newly replicated viral genomes are pack-
aged into assembled capsids in proportion to their intracellular
abundances.

Viruses then exit cells and pocapavir canbind and neutralize free
virions according to their capsid phenotype. We parametrized viral
neutralization rates based on the reduction in viral titres measured
experimentally in pocapavir-treated populations of mixed resistant
and susceptible cultures (see ‘Parameter inference’ section in the
Methods). Capsids composed solely of resistant subunits survive
pocapavir application with probability 1, while those composed of
fully susceptible subunits survive with probability 4 x 10~ (Fig. 3b).
Our model recapitulates the observations of Tanner et al.® that titres
of resistant viruses (specifically, viral genomes encoding resistant
subunits) decrease when coinfected alongside susceptible viruses
when treated with pocapavir (Fig. 3c,d).

Resistance suppression is dependent on susceptible

virus density

We first assessed the conditions under which pocapavir resistance
evolutionis suppressed during asingle round of replication with poca-
pavir treatment. Specifically, we measured the change in resistance
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Fig. 2| Pocapavir-treated poliovirus outcomes diverged between cell culture
and clinical trial settings. a, In vitro experiments by Tanner et al.* demonstrated
that coinfection of drug-resistant (res.) and susceptible (sus.) poliovirus strains
suppresses the yield of resistant virus under pocapavir treatment. b, In the
clinical trial reported by Collett et al.", pocapavir failed to significantly reduce
time toinfection clearance compared with a placebo in three of four matched
groups of participants administered the live attenuated poliovirus vaccine, and
resistance was enriched in the pocapavir group. Points represent the clearance
dates of individual trial participants and are coloured by resistance status
(resistance inred, susceptible in blue), and grey boxes indicate dates that were
not sampled during the trial (DPI, days post infection).

frequency asafunction of the total multiplicity of infection (MOI—viral
density, defined as the ratio of the total number of viruses to the total
number of infectable host cells). We initialized simulations with the
resistantgenotype frequency setat fr.s = 10~*, consistent with levels
observed in untreated poliovirus populations®',

At high MOIs (MOI = 10?%), genotypic resistance increased in fre-
quency by less than 107 after a single round of replication in the pres-
ence of pocapavir (Fig. 4a). These results are consistent with Tanner
etal.and the logic underlying phenotypic mixing. However, this resist-
ance suppression did not extend to populations that were initialized
atlower MOIs. At MOI <1, the resistant genotype frequency increased
to more than 12% of the population in a single round of replication.
These results can be understood in the context of the MOI control-
ling the degree of coinfection and subsequently the strength of the
genotype-phenotype association. At high MOls, coinfection is ubiq-
uitous and rare genotypes are not often associated with their capsid
phenotype (Fig. 4b and Extended Data Fig. 1). However, at low MOls,
coinfection is rare and genotypes and phenotypes associate directly
(Fig. 4¢), allowing resistant genotypes to directly benefit from their
encoded phenotype without interference.

We next considered that infections are dynamic processes, and
the degree of viral suppression or proliferation in one generation may
determine viral density in subsequent generations. If pocapavir treat-
mentdrastically reduces the viral density (and consequently the total
MOI), this may lead to conditions in which resistance can emerge. We
therefore performed aninsilico serial passaging experimentin which
we inoculated cell populations at a high MOI (MOI of 100) with pre-
dominantly susceptible viruses (resistant genotype frequency
fres = 1 x107%). We allowed viruses to replicate and be neutralized by
pocapavir, and seeded the surviving viruses on fresh cell populations
over multiple generations.

Consistent with single-step experiments at high MOI, the viral
population decreased in abundance after one round of replicationin
the presence of pocapavir (Fig. 4d). As a result, the surviving viral
progeny infected cells at substantially reduced MOI and resistant

genomes increased in both frequency and abundance after asecond
and third round of passaging. Once the viral population had recovered
enough for widespread coinfection, resistant genotypes outnumbered
susceptible ones over 100-fold, and susceptible subunits no longer
sensitized their resistant counterparts (Extended Data Fig. 2). Rather,
resistant viruses appeared to shield rare susceptible genomesina
form of socially encoded cross protection. These dynamics can be
understood by tracking the change in MOl and resistance frequency
on astepwise phase diagram, initiating simulations across arange of
initial total MOIs and resistance frequencies (Fig. 4e). Initial conditions
with low resistance frequencies and sufficiently high MOl lead first to
arapid reduction in the MOI, which then permits increases in the
genotypic frequency of resistance. Note that one way to interpret this
sequenceis thatthe low viral titre outputin Fig.4bis the low MOlinput
in Fig. 4c, enabling the spread of resistant viruses. Regardless of the
initial conditions in our deterministic model (MOI > 0, fz.s € [0,1]),
resistance becomes the dominant genotype over time. Despite phe-
notypic mixing effectively suppressing resistance at high MOls, rapid
population contraction in response to pocapavir ultimately under-
mines that suppression.

Stochastic model replicates clinical trial outcomes

While our deterministic model can explain how resistance to pocapavir
may have emerged in clinical trial participants despite phenotypic
mixing, it cannot recapture the clinical trial observation that a sub-
set of pocapavir recipients clear their infections early with little to no
resistance evolution” (Fig. 2b). To investigate the dynamics driving the
clinicaltrial clearance times, weimplemented astochastic version of the
modelinwhich simulated viral elements were drawn from probability
distributions at each replication stepinafinite host cell population with
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Fig. 3 | Discrete-time model of poliovirus replication, mutation and survival
under pocapavir treatment. a, We simulate intracellular poliovirus dynamics in
four stages: (1) viral entry into host cells, (2) genome replication with mutation,
(3) production of capsid subunits and (4) assembly and packaging of progeny
virions. b, Capsid-mediated survival is modelled by culling progeny virions
according to their capsid composition. Capsid survival probability as a function of
the number of resistant subunits (line) was fitted from cell culture experimental
data from Tanner et al.® (points). ¢,d, Resistant viral yield under different
intensities of susceptible virus coinfection shows a density-dependent effect
invitro® (c) and insilico under our model (d). Throughout the figure, resistant
variants areillustrated in red and susceptible variants are illustrated in blue.
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Fig. 4 | Resistance suppression is MOl dependent, and resistance emerges if
bottlenecks do not lead to extinction. a, Change in resistance frequencyina
single generation (Afges) depends on the MOI (initial fres = 1 x 10~4). b, At high
MOI, rare resistant genomes are encapsidated by phenotypically susceptible
capsids, muting genotypic selection. Although nearly all capsids are
phenotypically susceptible, some survive pocapavir administration (a fraction
greatly exaggerated for this cartoon), as observed in cell culture. ¢, At low MOI,
viruses singly infect cells, and rare resistant genomes are encapsidated by
phenotypically resistant capsids, enabling selection for resistance.d, Over
multiple generations, pocapavir treatment transiently reduces viral population
size for bothresistant and susceptible genomes but leads to viral rebound of a

primarily genetically resistant population following low population density.

e, The discrete step phase diagram shows the joint change in genotypic resistance
frequency and MOI from different initial conditions. Arrows are shortened by
80% toincrease legibility. The trajectory fromdis overlaid in grey. f, Clearance
dates from the observed clinical trial and one simulated clinical trial of n = 93 viral
populations treated with pocapavir. The dashed line indicates the date of the
earliest placebo clearance. g, Late and early clearers both experienced drops in
resistant and susceptible viral population size with diverging outcomes following
the population bottleneck. Throughout the figure, resistant variants are
illustrated inred and susceptible variants areillustrated in blue.

animmune system that responds toinfection (see Immune clearance’
sectionin the Methods). In brief, we modelled viralimmune clearance
via a non-specific, ramping innate immune response that removes
virusesirrespective of capsid phenotype and parameterized clearance
rate and host cell population size based on the clearance dates in the
clinicaltrial placebo group. We used this model to simulate aninsilico
pocapavir clinical trial by running 93 simulations (representing 93 trial
participants) until viral extinction. The infections were initialized with
one susceptible virus per host cell and no resistant viruses. Pocapavir
was administered after 24 h (three rounds of replication,n=23)or72h
(nine rounds of replication, n =70), as in the clinical trial.

Our model broadly recaptures the clearance time and resistance
evolution outcomes observed by Collett et al.". Specifically, viral popu-
lations exhibit a bifurcation of outcomes, in which they clear shortly
after pocapavirinitiation (<7 days after infection) with little genotypic
resistance, or clear later (=7 days after infection) with widespread
genotypic resistance (Fig. 4f). Analysis of the simulated population
trajectories revealed that both early clearers and late clearers experi-
enced sharp populationbottlenecks and low MOIs shortly after poca-
pavirinitiation (Fig. 4g and Extended Data Fig. 3). In late clearers, this
bottleneck allowed for rapid, resistance emergence according to the
dynamics explored above, whereasin early clearers, thisbottleneck led
tostochastic extinction. Repeating clinical trials with different host cell
populationsizesled to changesintherelative probabilities of these two
outcomes (Extended Data Fig. 4), but not their qualitative behaviour.

Collett et al." also observed that a greater proportion of partici-
pantstreated at 24 hexhibited resistance thanthe 72-h treatment group
(15/23 versus 25/70, Fisher’s exact test, P= 0.0163), whichis potentially
unexpected given that more resistant genomes are expected to exist

after 72 h. Under certain starting conditions in our model, this pattern
can emerge because resistant genomes produced before widespread
coinfection can be more tightly linked to their resistant phenotype,
counterbalancing their lower numbers (Extended DataFig.5).Insum,
our model can explain counterintuitive and divergent participant
outcomes among pocapavir recipients in observed by Collett et al.”.

Resistance cost, but not dominance effects, can change
simulation outcomes

Wetested whether variations of the fitness function—eitherimposing a
fitness cost of resistance or altering the phenotypic dominance of resist-
ant subunits (that is, the number required to confer drug survival)—
affected our results. Introducing a resistance cost slowed resistance
evolution, reduced equilibrium resistance and increased stochastic
clearance during bottlenecks (Extended Data Fig. 6). However, this
effect may not be clinically relevant, as pocapavir resistance mutations
donotappear costly in cell culture®®™°. By contrast, varying dominance
had no qualitative effect on resistance outcomes (Extended Data Fig.7
and Supplementary Text 1).

Reduced drug potency can enhance long-term control of
resistance and lower viral burden

Thecriticalliability of pocapavir identified above is that effective neutral-
ization of the virus disrupts susceptible viruses’ abilities to interfere with
resistant phenotypes via coinfection. We hypothesized that increased
survival of susceptible viruses would enhance resistance suppression by
maintaining higher rates of coinfection over time. Furthermore, because
high viral loads follow resistance emergence, suppressing resistance
could reduce total burden despite survival of susceptible viruses. We
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Fig. 5| Drugs less potent than pocapavir can better suppress resistance and
maintain lower viralloads. a, We modelled hypothetical drugs 10x,100x and
1,000x weaker than pocapavir and plot the probability of virion survival as a
function of the number of resistant capsid subunits under these drug conditions.
b, In deterministic serial passage experiments, the 100x weaker drug maintained
alower total viral population than pocapavir (resistant genomes, red; susceptible
genomes, blue). We simulated clinical trials of individuals treated with drugs
1x,10%,100x and 1,000 weaker than pocapavir. ¢,d, Reducing drug potency
delayed mean clearance time measured by days post infection (c) buthad a
non-monotonic effect on the sum viral load over the course of the infection (d)
(n=100 for each group). Inboth cand d, dots represent individual simulations
and are coloured based on the frequency of resistance in the population over

the course of the infection (scale ind). Error bars show the mean (black dash) +
variance. For an expanded range of drug potencies, see Extended Data Fig. 8b,c.

therefore considered the effects of hypothetically less potent drugs (or
alternatively, lower doses of pocapavir) that permitted greater degrees
of survival by virions with fully or partially susceptible capsids (Fig. 5a;
see ‘Variationin drug strength’section in the Methods).

Reducing drug potency led to smaller gainsinresistant genotype
frequency in a single round of replication, in line with evolutionary
expectations for weaker selective pressures (Extended Data Fig. 8a).
However, reducing drug efficacy also led to a less rapid decline in the
absolute number of susceptible genomes. For example, adrug with a
100-fold reduced efficacy reduced the MOl after asingle generation to
approximately 10, whereas pocapavir reduced the MOl to substantially
less than one virus per cell (Fig. 5b). As a result of this sustained mod-
erate MOI, genotypic resistance increased minimally (up to 0.16% of
the population) over the next six passages while genotypic resistance
under pocapavir reached near 100%. Because resistance remained
suppressed, the population did not undergo full viral rebound and the
total MOl after six passages was approximately 20 times smaller under
the100x less potent drug than pocapavir. This suggests that reducing
antiviral potency can, under some circumstances, improve multiple
aspects of viral control.

To evaluate the potential clinical implications of reducing antiviral
potency, we simulated insilico clinical trials of 100 individuals treated

withreduced potency drugs (Fig.5c,d, assessed across a greater range
in Extended Data Fig. 8b,c). We found that pocapavir had an earlier
mean clearance time compared withthe less potent hypothetical drugs.
Reduced drug potency weakened population bottlenecks, preventing
stochastic extinction of viral populations at small population sizes
when treated with drugs weaker than pocapavir.

By contrast, reducing drug potency had more complex effects on
thefrequency of resistance and the sum total viral population size over
the course of infection (Fig. 5d). Reducing drug potency by a factor of
10resulted innear ubiquitous resistance evolution and high viral popu-
lation sizes across trial participants. This reflects that a 10x reduced
potencyisastrongenough selective pressureto bring viral populations
intoaregimeinwhichcellsaresingly infected and resistance canevolve,
but does not cause the severe bottlenecks and stochastic extinctions
seen with pocapavir. By contrast, reducing drug potency by a factor
of 100x produced sufficiently gradual viral decay during initial drug
application to allow resistant-susceptible coinfection to be durably
maintained. While this rate of viral decay was not strong enough to
cause stochastic extinction during bottlenecks, the sustained coinfec-
tionreduced therate of resistance evolution and subsequently the total
viralload compared with pocapavir. Finally, a very strong reduction of
drug potency by a factor of 1,000x selected for almost no resistance
evolution, but also did not restrict the viral population relative to an
untreated control. This suggests that, while reducing drug potency can
improve multiple important clinical metrics within the context of our
model, notall reductions in drug potency will have favourable effects
and thereis an optimal balance between preserving susceptible virus
and limiting total infection burden.

Discussion

In this Article, we show that a single model of poliovirus population
dynamics and genetics can reconcile seemingly divergent outcomes
of pocapavir treatment in cell culture® and clinical trial settings.
Our key insight is that therapeutic strategies that rely on interaction
between viruses must account for the demographic effects of thera-
peutic success. If the long-term efficacy of these therapies depends
on the durability of intracellular interactions, lowering viral density
through successful treatment can decrease coinfection rates and thus
the potential for therapeutically beneficial interactions between viral
genomes and their encoded proteins.

Thereisgrowinginterestin exploitinginteractions between viral
genomes for therapy. Most efforts rely on defective genomes that
parasitize replication-competent viruses rather than on sensitization
mechanisms like those we model here' ', Perhaps the most promis-
ing of these strategies are therapeutic interfering particles (TIPs—
replication-incompetent mutants that suppress replication-competent
viruses during coinfection), because their interference can strengthen
as their population grows. Although TIPs are an active area of inves-
tigation, Pitchai et al.” recently demonstrated an effective proof of
concept for using TIPs to treat human immunodeficiency virus over
shorttimescales. The demographic feedback considered in our model
highlights potential challenges with such an approach; over longer
periods of time, if TIPs drive replication-competent viruses to near
butnot complete eradication, TIPs may lose their ability to self-renew
and themselves become eliminated. This could ultimately lead to the
unencumbered rebound of replication-competent viruses, especially
inthe case of a virus such as human immunodeficiency virus that can
reactivate from alatent reservoir after TIPs have been eliminated.

Ifintracellular interactions are crucial for the success of these
treatments, how can they be maintained in the face of demographic col-
lapse? Inthe case of TIPs, Weinberger, Schaffer and Arkin® found that
weaker interference between TIPs with their wild-type counterparts
favours the long-term success of TIP therapy®. Indeed, all successful
demonstrations of TIPsinrodents'®° or mosquitoes® allow sufficient
wild-type replication to maintain therapeutic pressure in subsequent
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Fig. 6 | Targeting viral traits affected by multiple intracellular viral genomes
requires an understanding of eco-evolutionary feedback. Viral density
determines the degree of intracellular interactions, which in turn shapes realized
phenotypes, influencing absolute fitness, which then feeds back into viral density
inthe next generation.

generations. In our model of poliovirus and pocapavir, we achieve
sustainedintracellularinteraction through asimilar therapeuticinter-
vention—decreasing drugintensity. Modifying drugintensity through
dosage or administration frequency may allow more fine-tuned cali-
bration of intracellular interactions than identifying TIPs with the
appropriate degree of interference. To be clear, this is not a clinical
recommendation, and manyimportant model assumptions would need
toberigorously evaluated in experimental settings before altering any
therapeutic approach. However, similar strategies to prolong drug effi-
cacy by exploiting interactions between different genotypes are also
being explored innon-virology settings. For example, in drug-treated
bacterial*?and cancer®* populations, moderate-dose or pulsed strate-
gies can prolong competition between susceptible and resistant cells,
thereby lowering the overall population size over time and delaying
treatment failure.

Although these treatment strategies reckon with similar demo-
graphic dynamics presented here, they may require different medical
and public health considerations. For example, managing disease
severity and resistance evolution without eliminating the replicating
populationmay be acceptable in cancer treatment; however, prolonged
infections could lead to more opportunities for disease spread in the
case of atransmissible pathogen. Furthermore, although we focused
on virus-virus interactions causing interference in this study, there
are other instances where these interactions may be beneficial*"*
(Supplementary Text 2). When considering viral evolutionin these set-
tings, models that bridge intra- and interhost dynamics, and consider
positive demographic feedback loops, could be valuable.

Acentralassumptioninour modelis that the number of viruses per
hostcellis the primary driver of coinfection rate. While this assumption
is common**, diverse viral behaviours can modulate coinfection.
For example, the first virus infecting a cell can prevent others from
entering in a process called superinfection exclusion®. Conversely,
en bloc transmission, in which viruses are packaged and transmitted
collectively, can enhance coinfection®*2. To our knowledge, poliovirus
does not exhibit superinfection exclusion®?**, but growing evidence
suggests that enbloc transmission®~*>** and even shuttling of poliovirus
by enteric bacteria®® can be common during infection. These factors
couldelevate poliovirus coinfection rates beyond what we considerin
our model, or change which genotypes coinfect together.

Host and environmental factors could also affect the realized
frequency of coinfection and subsequent evolutionary dynamics. We
assume that cells are equally susceptible to poliovirus infection and
spatially well mixed. In practice, expression of poliovirus’ primary
receptor, CD155, varies considerably among cells®” and at different
stages of disease’®. This could concentrate virus into asmaller number

of cells, enhancinginterference, or result in certain cells that can only
be infected by few virions, potentially allowing greater expression
of phenotypic resistance. The organization of host cells in a tissue
also stands to impact coinfection dynamics®. Limited viral dispersal
could increase coinfection and therefore interference, but it might
also concentrate resistant genomes into the tissue sections in which
they initially arose, limiting the degree to which susceptible genomes
couldinterfere with resistant spread. This effect might also vary across
organ systems. Notably, the limited resistance evolution observed in
pocapavir-treated mice may relate toincreased viral density in neuronal
infections®** relative to the gut epithelial infections of the pocapavir
clinical trialin which resistance evolution was common. Investigating
theimportance of intrahost spatial and environmental variation is an
important future area of research.

A second potentially important form of spatial organiza-
tion is intracellular. Many viruses, including poliovirus, form
membrane-associated structures that can sequester viral components
near their encoding genomes***, This effect could limit protein diffu-
sionand reduce phenotypic mixing. Poliovirus capsids are tethered to
their membranes during virion assembly*, so it is possible that some
degree ofintracellular segregation contributes to our observation that
even very rare resistant genomes in a cell impart partial phenotypic
resistance. Despite this, Tanner et al.° observed that phenotypically
distinct capsid proteins intermingle in single chimeric virions, so
the exact extent of intracellular mixing of poliovirus capsid subunits
remains unknown. Nevertheless, the organization of viruses within
a cell is likely to be a key determinant of therapeutic strategies built
around intracellular resource sharing.

More broadly, our study contributes to a growing body of work
framing viral coinfection throughthe lens of ploidy, drawing parallels to
how multiple gene copies shape phenotype in cellular organisms”™**,
In classical diploid genetics, a single biallelic locus can produce up to
three phenotypes, depending on the interactions between the alleles
(thatis, the ‘dominance’ of one allele over the other). Although the fre-
quency of these phenotypes can shift between generations, the ploidy
levelitselfremains fixed. Among viruses, the number of genomes that
contribute to a phenotype can vary between host cells and dynami-
cally over the course of an infection’. The association of several viral
genomesinahost cell canlead to more complex and varied phenotypes
than is possible in a diploid model*. The model that we explore here
hasaclassical analogue toincomplete dominancein astandard diploid
framework, in which the addition of more resistant proteins always
partially benefits a capsid in the presence of the drug. However, recent
work has also described instances of apparent over- or underdomi-
nanceinwhich coinfecting viruses haveincreased or decreased fitness
relative to non-mixed infections*®™'. Regardless of the exact form of
intracellular dominance, shared phenotypes can clearly determine
viral fitness. Because absolute fitness within a population governs
viral density in the immediate future, it therefore impacts the degree
of viral intracellular interaction moving forward, and thus how new
phenotypesarerealized. Therefore, viral ‘ploidy’ not only changes over
time, but feeds backintoitself (Fig. 6). Although our model centres on
poliovirus and pocapavir, its core principles—density-driven coinfec-
tion, transient genotype-phenotype associations and demographic
feedback with the environment—are likely to be broadly relevant for
designing therapies that exploit the social lives of viruses, as well as
viral evolutionary dynamics more broadly.

Methods

We developed both stochastic and deterministic versions of a
discrete-time dynamical model of poliovirus replication thatintegrates
viralentry, genome replication, mutation, capsid formation, pocapa-
vir neutralization and immune clearance. We describe the stochastic
version here, while the deterministic version follows the same prob-
ability distributions but accounts for every possible outcome (that is,
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integrates over the distribution) rather than drawing specific values.
Full details are provided in the Supplementary Materials and Methods.
Allsimulations and analyses were performedinR, version 4.1.0%. Data
visualization was performed with the ggplot2 package®™.

Viral entry
Attime ¢, the total viral population, v, ,, consists of ., resistant and
Siorc SUSCeptible genomes, yielding

Vtot,t = T'tot,t + Stot,e-

We assume that viruses are equally likely to infect any of the y host
cellsin the population, and that there is no superinfection exclusion.
The number of resistant and susceptible genomes enteringacell (ran-
dom variables Ry and S;, respectively) are modelled by
binomial distributions,

. 1 . 1
Rine ~ Bin (rtot,t’ ;) Sinf ~ Bin (Stot,t’ }‘,)v )]

where ~ means ‘is distributed as’. The total number of viruses that
have infected a given cell, v;,r, can be described by the equation
Uinf = Fint + Sinr, Where ricand s, represent realizations of the binomial
distributions described in equation (1). Thus, on average, v;s will equal
You the MOI.

We note that, in the deterministic model, r,,. .and s, ,need not be
integers, rendering the binomial distribution undefined. We describe a
weighted sampling scheme to circumvent thisissueinthe ‘Viralentry’
sectionin the Supplementary Materials and Methods.

Genome replication and mutation

For each infected cell, progeny production (V,,,) follows a Poisson
distribution with amean of the inferred average effective burst size, 8,
which accounts for the number of infectious particles that leave the
cell (thatis, V., ~ Pois(B) for v > 0). Replicated resistant genomes
(R.p) are modelled as

B Tinf
Rrep ~ Bin (Urep, U_f .
ni

GiventhatR,., takesonsomevalue, r,.,, the number of newly replicated
susceptible genomesinacell, s, is given by

Srep = Urep — I'rep-

Mutation between genotypes occurs per replicationevent at rate
1=2x107(ref. 9), so that resistant and susceptible mutants (the ran-
domvariables R, and S, respectively) are found by

Rinue ~ Bin(Syep, pt) and Sy ~ Bin (Fep, ).

Given that R, and S, take on the values r,,. and s,,,,, respectively,
post-mutation genome counts per cell (., and s,,,) are then found
asfollows:

I'pool = I'rep = Smut + 'muts  Spool = Srep — I'mut + Smut-

Capsid formation

Let o represent the number of subunits in a capsid. Each progeny
genome is packaged into a capsid composed of 60 subunits (6= 60).
The number of resistant subunits per virion (the random variable /) is
modelled binomially, where

/~Bin(o,ﬂ),
D,

inf

assuming that both resistant and susceptible genomes contribute
equally to the pool of capsid subunits. The probability that a capsid
hasiresistant subunitsis

Pi = Pr(l = il{Vinf, Fine}),

where i takes on adiscrete value between 0 and ginclusive.

Genomes are assigned to capsids via a multinomial sampling
process for each infected cell in the population. The number of repli-
cated resistant genomes that are packaged into a capsid with i resistant
subunitsis therandomvariable R, ;. Each R, ;can be collected into

avector R, Where

Rpack ~ MUItinom(rpoo[’pOs -5 Po)

with analogous sampling for susceptible genomes. At this point, virions
leave their cells and are pooled into groups according to their capsid
subunit composition and genotype.

Pocapavir neutralization

Drug neutralization is modelled by assigning each virion a survival
probability, w(i, t), that depends on its capsid composition (number
of resistant subunits i) and on the time of drug administration ¢,,..
Fort<t,,, w(i, t) =1(that s, before drug application, virions are not
affected by the drug). Whent > t,,,, survival is given by ascaled logistic
function:

where L(i) is the standard form of the logistic function:

1

MO Trem

The variables y, and y, represent the survival probabilities of fully
susceptible and fully resistant capsids, respectively, and k and i, are
inferred by fitting the function to cell culture survival probabilities
from Tanner et al.’. Under drug pressure, the survival of virions car-
rying resistant genomes (the random variable R, ) is then found by
binomial sampling 7,

Rsurv,i ~ Bin (rpack,i, O)(i, t)) 5

for each capsid subunit state (and similarly for susceptible virions).
R, then takes on the specific values r,,,, . After pocapavir neutrali-
zation, the total number of resistant genomes, r,,,, is calculated by
summing across all ry,, ;:

4
Fsym = Z Tsurv,i-
i=0

Asimilar sumis used to calculate total number of susceptible genomes.

Immune clearance

Following pocapavir neutralization, immune clearance is applied after
aspecified number of replications, t;,,,, via the survival function d(t).
For t < t;,, d(¢) =1. For t > t;,.,, survival is given by an exponential decay
function,

dait) = e(*’inix(t*fimm)),

where the initial immune sensitivity, /,,;., is drawn from a lognormal
distribution,

Iinic ~ Lognormal(§, 7).
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The parameters governing /,,;, (t;mm, €and 7) and the host cell population
size, y, were inferred by maximizing the log-likelihood of observing
simulation clearance times, given matched placebo clearance times
from the pocapavir clinical trial reported by Collett et al.™.

The virions that survive immune clearance and carry resist-
ant genomes are represented by R,.... This is found by binomially
sampling g,

Rimm ~ Bin(rsumvd(t))~

Note, immune clearance is considered in the stochastic model only.

Initializing the next generation

Inthe stochastic model, draws fromR;,, and S, represent the number
of resistant and susceptible genomes that can infect cells in the next
generation (that is, 1, ..; and S, ;). If the realized values of r,, .., and
S+ DOth equal zero, the simulation is terminated.

Variation in phenotypic dominance

To explore the impact of susceptible dominance over the resistant
phenotype, we changed the drug neutralization function to simulate
different relationships between resistant subunit composition and
virion survival. Using the standard logistic function as our base, we
used asteepness coefficient of k =100 to simulate a step-like function,
and varied i, to set theinflection point, corresponding to the minimum
number of resistant subunits needed to render a virion phenotype
resistant to drug. Otherwise, simulations wereinitialized with the same
parameters as the pocapavir simulations.

Fitness cost of resistance

We examined fitness costs of resistance through a linear fitness func-
tion in which each additional resistant subunit in a capsid was asso-
ciated with a k decrease in virion extracellular survival probability,
regardless of drug pressure (k € [0, 0.0165]; Extended Data Fig. 6).
Unless otherwise noted, k= 0.

Variation in drug strength
Toexplore theimpact of drugstrength on clinical outcomes, we scaled
the original pocapavir fitness function such that

(Wi, 6) = Yo)( Y5 — Yg)

w(iH)=y, + —m—m——,
€= Yo—Yo

where y, is the fitness of a fully susceptible capsid in the presence of
pocapavir, y, is the fitness of a fully resistant capsid in the presence of
pocapavirand y; is the new survival probability of a virion composed
entirely of susceptible subunits. Otherwise, simulations were initialized
with the same parameters as the pocapavir simulations.

Parameter inference

Parameters were inferred by numerical optimization in R (version
4.1.0)%. The specific objective functions varied by model and are
described below.

Estimation of viral burst size. We inferred the effective viral burst
size by fitting model outputs to mixed cell culture data from Tan-
ner et al.%, using matched initial MOIs. We specifically compared our
simulated data with reported results of pure Mahoney strain PV with
the VP3-A24V mutationin cell culture. This mutation is one of the most
commonly observed in experiments selecting for resistance”® and was
the only strain/mutation pairing for which there was a negative control
reported in Tanner et al.°. We evaluated model fit by minimizing the
sumof squared differences between the log values of the observed and
simulated plaque-forming units (PFU) after one round of replication.
Specifically, we minimized

> (log(real_pfu,) — log(sim_pfu,))z,
7

where/isthe set of resistant MOl and susceptible MOl coinfected pairs
reported by Tanner et al.’. Fitted values and their empirically measured
comparisons are reported in Extended Data Table 1.

Estimation of immune clearance parameters. Parameters governing
immune clearance and host cell population size were estimated by
fitting a stochastic model of infection and clearance (assuming nodrug
effect; thatis, w(i, t) = 1fori € [0, 60], ¢ > O for all phenotypes at all time-
points) to placebo group clearance data from Collett et al.". Because
participants were not sampled daily, Collett et al. reported the clear-
ancedate asthe first sample at which no virus was detected (Fig.2). To
replicate this, we rounded each simulated clearance time up to the next
available sampling day, following the trial design.

We simulated 480 placebo recipients (10x the original sample
size) and calculated the probability of clearance on each sampled day.
These model-based probabilities were compared with the empirical
distribution using a multinomial log-likelihood. Specifically, after
adding asmall pseudocount to avoid log-zero issues, we computed

logL =" n, x logpy
X

where n, is the number of placebo participants observed to clear on
day x, and p, is the model-derived probability of clearance on day x. If
asimulated participant cleared after day 43 (the final sampling day),
we could not compare this outcome with empirical data and instead
returned afixed log-likelihood value of 1,000 to penalize these param-
eter settings. Fitted values and their empirically measured comparisons
arereported in Extended Data Table 1.

We note that the relevant in vivo cellular population size y is not
welldescribedintheliterature, and its fitted value in our optimization
routine is sensitive to starting conditions, suggesting that it does not
drivelikelihoods. We present results with the fitted value of y = 37,041in
the maintext, asitbroadly matches clearance outcomesinthetreated
group, withtwo additional y values resulting from different optimiza-
tioninitial conditions in Extended Data Fig. 4. We further analytically
characterize the dependence of the extinction probability on y x u
in the ‘In vivo cellular population size’ section in the Supplementary
Materials and Methods and Supplementary Fig. 1.

A complete account of the model equations, parameter inference
and simulation detailsis provided in the Supplementary Materials and
Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used for the analyses are available via Zenodo at https://doi.
org/10.5281/zenodo.17458552 (ref. 54).

Code availability
Code for simulations, data analysis and data visualization is available
viaZenodo at https://doi.org/10.5281/zenodo0.17458552 (ref. 54).
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Extended Data Fig. 1| Distribution of capsid subunit compositions following Simulations were run using standard model parameters reported in Extended
viral replication. For cellular populations infected by viruses with different Data Table 1. At low MOls (0.1and 1), progeny genomes are predominantly
frequencies of genotypic resistance (fg., €{0.01,0.1,0.5,0.9,0.99}, rows) and encapsidated in capsids reflecting their own genotype (that is, homogeneous
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different numbers of resistant capsid subunits. Outcomes are plotted separately is most mixed when resistant and susceptible genotypes are present at similar
based onif virions contain a susceptible genome (blue) or a resistant one (red). frequencies.
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Extended Data Fig. 2 | Distribution of capsid subunit compositions over

time inaserial passaging experiment. For each timestep in the serial
passaging experiment shown in Fig. 4d (rows), we plot the density of capsid
subunit compositions (that is, the number of resistant capsid subunits) for
pre-neutralization virions based on whether they contain a susceptible (blue) or
resistant (red) genome. The population was initialized with f.,=10"*and an MOI
of100. At t=0, both resistant and susceptible genomes are packaged in highly

susceptible capsids, but as the MOl drops, resistant and susceptible genomes are
increasingly packaged in capsids matching their phenotypes. While MOl remains
low and susceptible genomes become increasingly rare (¢ =3), the phenotypic
variance of susceptible genomes becomes large based on whether or not they
coinfect with resistant ones. After rebound (¢>4), both resistant and susceptible
genomes are packaged in highly resistant capsids.
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Extended DataFig. 3 | Population dynamics of individual simulations in the clearance time was earlier that 7 days post infection (DPI) or later than or equal to
simulated pocapavir clinical trial. For each simulated viral populationin the 7DPIL. Asinthe clinical trial, simulations were administered pocapavir beginning

pocapavir clinical trial summarized in Fig. 4f, we plot the viral density (genomes/ either 24 or 72 hours post infection, which causes the two asynchronous dropsin

cell) for resistant (red) and susceptible (blue) genomes over time. We stratify viral density 1and 3 days post infection.

populationsinto early clearers (top) or late clearers (bottom) based on if the
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Extended Data Fig. 4| Smaller host cell population sizes lead to more frequent
early clearance in simulated clinical trials. Immune clearance parameters were
optimized starting from three different initial host cell population sizes (15,000,
30,000, and 60,000) and converged to values similar to their starting conditions
(15,935,37,041, and 68,992, respectively). The frequency of early (< 7 days, black)

versus late (>7 days, grey) clearance was dependent on host cell population size,
where early clearance was more common in simulations with smaller host cell
population sizes (n =93 simulations). In the main text, results are shown with the
intermediate initial conditions (y =37, 041).
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Extended DataFig. 5| Intracellular protein sharing canincrease the frequency
of resistance evolution during early treatment. Collett et al." found that
agreater proportion of viral populations treated 24 hours post-infection
developed resistance than those treated 72 hours post- infection (15/23

versus 25/70; p=0.0163, Fisher’s exact test). We examined the emergence of

this behaviour using the model in this manuscript (in which genomes can be
encapsidated by any available intracellular capsid proteins), and amodel without
intra-cellular mixing (in which genomes are encapsidated only by capsid proteins
corresponding to their genotype). (A, B) We compared the rates of resistance
evolutioninthe 24 and 72 hour treatment groups across host cell population

Cell Population (y)
sizes (y) and initial numbers of infecting susceptible viruses (n =150 per group
and parameter set, f;..>50% defined as resistant). We identified conditionsin
which earlier treatment was associated with more resistance evolutionin
the 24 hour treatment group than the 72 hour treatment group (shownin green)
in the intra-cellular mixing model (A) but not the non-mixing model (B).
(C-D) Example rows from (A) and (B) show the proportion of resistant infections
inthe 24 hour (green) versus 72 hour (purple) treatment groups under example
initial conditions. Clinical resistance frequencies from Collett et al." at the
24 hour and 72 hour treatment times are shown as dotted and dashed lines,
respectively.
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spread of resistance and results in more favorable clinical outcomes. (A-C) We initial fre; =107, D-F) and reduce the equilibrium values of both total MOl and fi.,
generated compound fitness curves that accounted for both the standard fitness (G-I). Clinical trials simulated with the same immune parameters and pocapavir

costimposed by pocapavir and alinear fitness cost associated with greater treatment times asin Fig. 4f, butincorporating fitness costs (k € [0, 0.0165]),
numbers of resistant subunits per virion. The fitness of a fully resistant capsid showed earlier average clearance (J), reduced total viral loads (K), and lower
isnoted above its respective curve. Deterministic model simulations using the resistance frequencies (fi.,; legend in K applies to point coloursinJ; horizontal
fitness functions in A-C reveal that greater costs of resistance slow the rate of lineindicates mean value, bars show + standard deviation).
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Extended DataFig. 7| More ‘dominant’ drugs do not suppress resistance
better than pocapavir. (A) We considered a hypothetical drug to which drug
resistant capsid subunits only conferred a survival advantage if all 60 subunits
were resistant (that is, susceptible subunits fully dominate resistant ones). We
compared this fully dominant drug (dashed grey) to pocapavir (solid black).

(B) Insingle passage simulations assessing the change in resistance frequency
(4fres) as afunction of the initial MOI, the fully dominant drug suppressed
resistance marginally better than pocapavir at high MOI (initial fy.,=107).

(C) However, in a deterministic serial passage experiment, both drugs (pocapavir,
solid; the fully dominant drug, dashed) led to similar population trajectories for
susceptible and resistant viral densities over time. In (A-C), we considered that a
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capsid must have 60 resistant subunits to have any increased survival probability.
We next consider how lowering that threshold to generate a resistance response
(thatis, 100% survival probability when treated with pocapavir) from 60 affects
clinical outcomes. Five such thresholds are plotted in (D), but 2000 trials were
run across arange of threshold values. Threshold values do not affect clearance
date (E) or sum total viral load over the course of infection (F). Each point
represents an individual simulation with agiven resistant capsid threshold value
to confer resistance, and points are coloured by the frequency of genotypic
resistance observed in the simulation over the course of infection. For both

(E) and (F), the black line shows a rolling mean and the grey ribbon shows the
variance around the mean.
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the reduced probability of population bottlenecks leading to early extinction.
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Extended Data Table 1| Estimated model parameters and their associated notation, estimated values and empirical
comparisons

Parameter (units) Variable | Estimated Value | Empirical Comparison

Fitness function, steepness k 0.061675 -

Fitness function, inflection i 60 -

Effective burst size (infections particles/cell) | 203.17 23.89 - 277.78 (particles/cell[2, 3] x PFU/particle [4])

Clinical model, host cell pop. (cells) 5 37,041 -
Imm. clearance delay (hours) timm 80 72 to 125 [5]
Imm. clearance distribution, mean /3 —1.424 -
Imm. clearance distribution, SD T 0.460 -

Parameter estimates were obtained by fitting the model to cell culture and clinical trial data. In brief, burst size and fitness function parameters were estimated by fitting to cell culture data
reported in Tanner et al.%, and host cell population and immune clearance parameters were estimated by fitting to clinical data from a placebo-treated group reported by Collett et al.” (see
‘Parameter inference’ in the Methods).
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Study description In this study, we developed an evolutionary model to explore the interaction between polioviruses resistant or susceptible to the
antiviral pocapavir. We compared our simulation data with previously published cell culture data, and clinical trial data. We first
developed a basic form of the model which could replicate results derived from cell culture experiments. We then expanded on our
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our results to previously published clinical trial data, and previously reported cell culture data (Tanner et al., eLife (2014), and Collett
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Sampling strategy For deterministic models, sample size is not relevant. For stochastic models, we ran as many replicates as computationally feasible,
generally on the order of 100-10,000 simulations per in silico experiment. We verified that our sample sizes were sufficient by using

different initial seeds, comparing our results across experiments (data not show in our manuscript).

Data collection Data was generated using R 4.1.0 by A.J.R. All scripts used to generate, analyze and plot the data can be found at https://github.com/
federlab/polio-res-eco-evo.
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Data exclusions No data were excluded from the analysis.
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results were robust to this testing, and can be reproduced by the code at https://github.com/federlab/polio-res-eco-evo.
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