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ABSTRACT: A model of “ephemeral” population structure is pre-
sented that applies not only to biological systems in which discrete
groups form but also to networks without group boundaries. The
evolution of altruistic behaviors is discussed. Nonrandom interaction
and nonlinear fitness structures are modeled; together, these factors
can produce stable polymorphisms of altruistic and selfish types, as
well as bistability. Empirical applications of the model may be found
in microbes, marine invertebrates, annual plants, and other
organisms.
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Introduction

Evolutionary processes can be strongly affected by pop-
ulation structure. Such structure can take various forms.
A first distinction can be made between persisting and
ephemeral structure (Wilson 1983). Sewall Wright’s (1932)
“demes”—groups whose boundaries stay intact for many
generations—are an example of persisting structure.
Ephemeral groups, in contrast, form and dissolve in each
generation (Wilson 1975; Matessi and Jayakar 1976; Kerr
and Godfrey-Smith 2002a). A distinction crosscutting this
first one concerns the form of the population structure.
Many models, like those cited above, describe populations
divided into discrete groups. Another tradition of work
investigates populations with interactions between neigh-
bors but without group boundaries. These include models
of “viscous” populations (Hamilton 1964, 1975) and re-
cent models of evolution on networks (Nowak and May
1992; Taylor 1992; Wilson et al. 1992; Mitteldorf and Wil-
son 2000; Lieberman et al. 2005; Ohtsuki et al. 2006).
These models of neighbor interactions concern persisting
population structure. There has been less discussion of
populations in which individuals interact with neighbors
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in the absence of group boundaries but the population
structure is dissolved and reestablished in each generation.

Here we give a general model of the evolutionary con-
sequences of ephemeral population structure. The model
is designed to deal with cases where a population is divided
into groups and cases where neighbors interact but there
are no group boundaries. The term “network” is applied
generally here; group structures may be treated as networks
with a particular pattern of connectivity.

Modeling Framework

We assume an infinite population of asexually reproducing
semelparous individuals, of types A and B, who settle into
a spatial structure with well-defined neighbor relations that
affect fitness. This structure might comprise a collection
of discrete groups, a line, a lattice, or some other network.
These structures may be represented as graphs (undirected
graphs in all our examples) where individuals are nodes
and fitness-affecting interactions are edges. Some possible
forms of population structure are represented in figure 1.
While natural networks contain heterogeneity in neigh-
bor number, for simplicity here we assume regular net-
works; all individuals have the same number of neighbors,
n. We also assume that there is no mutation. With repro-
duction and the death of the parents, the population struc-
ture dissolves. The offspring then form a new network.
Three components of such a model can be distin-
guished: the fitness structure, the neighborhood distri-
butions, and the network formation rule. The fitness struc-
ture is an assignment of fitnesses to each of the types as
a function of the possible neighborhoods they may en-
counter. In our models, the (absolute) fitness of the A type
when surrounded by i neighbors of the A type is sym-
bolized «;. The fitness of the B type when surrounded by
i neighbors of the A type is 3, The neighborhood distri-
bution for a type at time t is the frequency distribution
of fitness-affecting neighborhoods encountered by that
type at that time step. The fitness structure, the neigh-
borhood distributions, and the frequencies of the types
suffice for the prediction of evolutionary change over one
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Figure 1: Life cycle of a population with ephemeral structure. Individual types are represented as filled or open circles (network nodes), and fitness-
affecting interactions are represented as connections between the circles (network edges). The first step in the life cycle involves network formation.
We compare five kinds of networks. a, Individuals form discrete groups in which interactions occur within but not between groups. b, Individuals
form a “looped-chain” network in which every individual has two neighbors but multiple groups do not exist. ¢, Individuals interact with neighbors
in a densely packed lattice. d, Hybrid between a and b: individuals do not form discrete groups, but parts of the network form densely interconnected
pockets. e, Individuals form a fragmented network in which discrete groups exist but interaction within the groups is not complete. In c—e, the
number of neighbors in the network varies from individual to individual, whereas this is constant in 4 and b. In some cases, these irregular networks
can be made regular either by extending to infinity or by wrapping the network (e.g., forming a torus in c). After the network forms, fitness-affecting

interactions occur and the network dissolves.

time step or generation. Specifically, let f*(¢) be the fre-
quency with which A individuals encounter a neighbor-
hood with i As at time step t Similarly, let f*(¥) be the
frequency with which B individuals encounter a neigh-
borhood with i As at that time step. If p(f) and p(t + 1)
are the frequencies of the A type at tand ¢ + 1, respectively,
then the equations for evolutionary change are

&

ple+1) = plo) 2 ) o

i=0

W = p(®) Z FA0) o, + (1 — p®) E OB,

This information does not suffice to predict further rounds
of change, however. Above, we assumed that the neigh-
borhood frequency distributions were known for time
in effect, the analysis started in the middle step of figure
1 and ended with the composition of a new offspring pool.
Further information is needed to determine how those
individuals will settle into a new network. This may take
the form of a network formation rule, a rule describing

how a population characterized by the frequencies of types
will form a network.

Suppose, for example, that the network formation rule
is that individuals settle randomly into a two-dimensional
lattice (fig. 1¢ extended to infinity). If each focal individual
is affected by its four neighbors in cardinal (N, S, E, W)
directions, then the neighborhood distribution for each
type will be binomial with parameters 4 and p(¥).

Results

We will focus on fitness structures in which the A type is
an “altruist.” The cases below all satisfy the following
conditions.

Neighbor altruism. A is an altruist if and only if

o;<f; for i e {0,1,2, ..., n}, )
o, <o, forie{0,1,2,...,n—1} (3)
B, <P, forie{0,1,2,...,n— 1} 4)

From inequality (2), in any given neighborhood, the B
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type fares better than A. From inequalities (3) and (4),
both types benefit from the addition of more A individuals
to their neighborhoods.

Within this category, a linear case has been much dis-
cussed (Wilson 1975, 1990; Nunney 1985):

a,=z—c+ b(i),
n
B =z+ b(}—i) (5)

Here z is a baseline fitness, c is the cost to the bearer of
a trait that is exhibited only by A, and b is the benefit
received by an individual when its entire neighborhood is
filled with A types. In the linear model, each additional A
neighbor increments the fitness of a focal individual by
the same amount (b/n). When ¢ and b are both positive,
the A type is an altruist in the sense of inequalities (2)-
(4). Hereafter, we also assume that b > c.

In this note we investigate a more general class of func-
tions that include the familiar structure in equations (5)
as a special case but allow that fitness may be a nonlinear
function of the number of A types in an individual’s neigh-
borhood (i). Specifically, we look at concave (down) and
convex functions, corresponding to, respectively, dimin-
ishing and increasing returns from adding A neighbors.
Convex and concave cases are represented in equations
(6) and (7), respectively.

ik+l
z—c+ b(—) s

o =
n
Bi=z+ b(i) ) ©)
ai=z—c+b[l—(1——i) ,
n
5,,=z+b[1—(1—£) . )

Here k measures the deviation from linearity. At k = 0,
equations (6) and (7) reduce to equations (5), and we
have the linear case. As k increases from 0, the fitness
functions get either more convex (eqq. [6]) or more con-
cave (eqq. [7]). These functions are evaluated at integer
values of i between 0 and #, inclusive. Fach function can
be obtained from the other by flipping across its horizontal
and vertical midpoints (app. A in the online edition of
the American Naturalist).

The average fitnesses of A and B types are given by
W) = E@ = 2 f'® o,
i=0

W, = EB) = 201% 8. ®)

The type with the higher average fitness increases in
frequency.

For the case of altruist fitness structures discussed above,
it is possible to derive a general condition for increase of
the A type in terms of ¢, b, and statistical moments of the
neighborhood distribution. Let x(#) and y(t) be random
variables giving the fraction of A types in the neighborhood
of an A type and a B type, respectively, at time t. Similarly,
let u(¢) and v(t) be random variables for the fraction of B
types in the neighborhood of an A type and B type, re-
spectively, at time t. (In all that follows, we drop ¢ from
time-dependent variables.) Under convex fitness structures
given by equations (6), altruists increase in frequency if

E(xk+1) _ E(yk+l) >£‘ (9)

Under the concave fitness structures given by equations
(7), altruists increase in frequency if

E@"") — E@*) > i

(10)
Results about some special cases follow immediately. First,
if the neighborhood distributions for A and B are the same
(x and y are the same random variable), then A decreases
in frequency. This includes the case of random network
formation. Second, if fitnesses are linear, then the only
feature that affects evolutionary outcomes is the mean of
each neighborhood distribution (Kerr and Godfrey-Smith
2002b; Fletcher and Doebeli 2009). Setting k = 0 in equa-
tion (9) or (10) shows that the altruist increases in fre-
quency if

EG) —E) > . (1)

If k = 1 in equations (6) or (7), then both means and
variances of the neighborhood distributions are important.
As k increases, higher-order statistical moments of these
distributions become relevant.

Results (9)—(11) apply for any regular network, includ-
ing those with group boundaries, densely packed lattices,
and others. In the language of the “Modeling Framework”
section, these results make use of information about the



fitness structure and the neighborhood distribution but
not the network formation rule. As a consequence, these
results describe change over only a single generation. To
extend the model beyond a single generation, we will need
a network formation rule.

The simplest example of a network formation rule is
random settlement of individuals into the network. Then,
the distribution of neighborhoods experienced by both
types is binomial, with parameters n and p:

.ﬁ=ﬁ3=tﬁh—m“i (12)

This is a case in which x = y for all values of p; it is hence
a case in which the A type always decreases in frequency.
The B type can invade a population of A’s, fix, and resist
invasion by A. This is analogous to well-known results
that hold for ephemeral group-structured populations (re-
viewed in Kerr and Godfrey-Smith 2002a).

We now turn to nonrandom network formation rules.
In some cases, a tendency for positive or negative corre-
lation between types can be represented with a parameter
F, which is used along with p to generate the “experienced”
frequency of A neighbors for each of the two types (Ham-
ilton 1975; Nunney 1985). We will call this a simple-
assortment model. Here an individual’s neighbors are each
chosen independently but with different probabilities for
the two types. For an A individual, the chance of each
neighbor being of the A type is p,; for a B individual, the
chance of each neighbor being of the A type is p;. These
probabilities are

F+p(l = F),
p(l — F).

Da
(13)

Ps

Here we assume that 0 < F<1 (although some negative
values are possible, with the lower bound determined by
the overall frequencies of the types). Simple assortment
involves two strong assumptions. First, F remains constant
as p changes. Second, neighbors are assigned to any focal
individual independently of each other.

To illustrate the constraints inherent in the second as-
sumption, imagine the sequential filling of places in a net-
work. After the placement of a focal individual, each neigh-
bor is determined independently. It is as if a coin were
independently flipped for each neighbor. The coin comes
up heads with probability F. If heads, the neighbor is the
same type as the focal. If tails, the neighbor is chosen at
random from the population. Equations (13) then apply.
This scenario is unproblematic if the network contains no
loops. When a network has loops, the assignments of some
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individuals to the network are constrained probabilistically
by the outcome of several prior assignments, not just one.

Networks without loops include lines, discrete pairs, and
some tree structures. Most networks do contain loops, and
then simple assortment does not strictly apply. In some
of these cases, loops may be scarce, however, and only a
small fraction of individuals are affected (e.g., fig. 1b). In
those cases, the simple-assortment model may apply as an
approximation. For instance, sparsely populated lattices
may contain few loops. Interestingly, there are also bio-
logically relevant networks filled with loops, where a cor-
responding simple-assortment model gives the right evo-
lutionary prediction despite a violation of some of its
assumptions (for an example involving reproduction
within discrete groups, see app. B in the online edition of
the American Naturalist).

If the simple-assortment model can be used, then

ﬁA = (7)&’(1 - PA)Hiia

fr = (’;)p;;u — )" (19

Suppose that the fitness structure is linear. Then, using
formulas (5), (8), (13), and (14), we find that the fitness
of A is higher than that of B if and only if
c

F> b (15)
This condition has an obvious kinship with Hamilton’s
(1964, 1975) rule. The condition can also be derived from
equations (11) and (13) by noting that under simple as-
sortment, E(x) = p, and E(y) = p;. The relation between
the two average fitnesses in the linear case does not depend
on p, and there can be no internal equilibria (aside from
total neutrality when F = ¢/b). So if inequality (15) holds,
A excludes B, and if F< ¢/b, then B excludes A.

When the fitness structure is nonlinear, the relations
between the average fitnesses may now be frequency de-
pendent, and additional possibilities such as internal equi-
libria appear. Suppose that the fitness structure is as in

equations (6) with k = 1. Then, under the simple-as-
sortment model, A increases in frequency if

§u+m—m@u—m+ﬂb€. (16)

When # = 1, inequality (16) reduces to inequality (15)
because nonlinearity can play no role. When n> 1, the
benefit accrued by adding successive A neighbors follows
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an accelerating function. For some parameter values, the
result is that each type is favored when common and un-
stable internal equilibria are possible (see app. A). When
F = 0, then inequality (16) does not hold for any value
of p, and the A type is lost. When F = 1, then inequality
(16) holds for all values of p, and the A type fixes.

If the fitness structure is as in equations (7) with k =
1, then A increases in frequency if

5{1 +(n— D2 — F—2p(l — F)]} >£. 17)

The benefit derived from adding successive A neighbors
now diminishes. The result may be that each type is fa-
vored when rare: when p is low, the A type benefits from
having a few rather than no A neighbors; when p is high,
the benefit to both types saturates, and A suffers from the
direct cost of altruism. As a result, there may be stable
internal equilibria (app. A). As above, when F = 0 or
F =1, A is lost or fixes, respectively.

Discussion

A summary of our results is given in table 1. Random
interaction prevents the evolution of altruism, a result
found in many models. The distinction between linear and
nonlinear fitness structures does not affect this result. Pos-
itive assortment of types generally favors altruism.
Whether altruism can prevail will depend on the relation
between the degree of assortment and the details of the
fitness structure.

When a simple-assortment model can be used, expres-
sions can be derived that give conditions for the increase
and decrease in frequency of an altruist type in terms of
F, a parameter measuring the tendency for like to interact
with like. When fitness structures are nonlinear, these con-
ditions may be frequency dependent and may result in
stable or unstable polymorphic equilibria. In some cases
of interest, including densely packed lattices and discrete
groups, a simple-assortment assumption may not apply.
However, if the fitness structure can be approximated by
equations such as equations (6) or (7), a limited number
of central moments (means, variances, etc.) from the
neighborhood distributions are sufficient to predict evo-

Table 1: Summary of results for ephemeral networks

lutionary change. For instance, when the fitness structure
is linear (eqq. [5]), only the means of the neighborhood
distributions are needed for evolutionary predictions.
These may be knowable even when other features of the
distributions are not.

Our model is idealized, but it may provide insight into
evolutionary processes in various organisms. The com-
bination of local interaction and dispersal at reproduction
is characteristic of many marine invertebrates. Acorn bar-
nacles (order Sessilia) are an example. Following repro-
duction, the offspring disperse as larvae in the sea. After
a swimming stage, the larvae settle on rocks, forming a
roughly two-dimensional population structure. Larval set-
tlement is active and guided by the topography of the
surface and chemical cues (Crisp 1961). A number of spe-
cies are gregarious, preferring to settle near conspecifics,
and there is also some evidence of kin aggregation (Knight-
Jones 1953; Veliz et al. 2006). Other marine organisms also
form networks with features represented in our model.
Active settlement into a network based on genotype, for
example, has been observed in marine invertebrates, such
as the colonial hydroid Hydractinia symbiolongicarpus
(Grosberg et al. 1996).

Microbes often live in spatially structured networks,
such as biofilms. In some cases the construction of the
biofilm itself can be seen as a cooperative trait, for which
“free rider” strains are known (e.g., in the bacterium Pseu-
domonas fluorescens; Rainey and Rainey 2003). Within
these systems, various public goods such as exoenzymes
(secreted enzymes that function extracellularly) may be
produced, again with known defector variants (Greig and
Travisano 2004). In such cases, because growth saturates
with the concentration of enzymatic products, the fitness
structure is inherently concave, as in equations (7) (Gore
et al. 2009). Thus, our model predicts that polymorphisms
between altruistic producers and selfish types are possible,
given nonrandom network formation.

Many biological systems naturally produce nonrandom
network formations through within-group reproduction
before selection occurs. The relationship between this life
cycle and simple assortment is treated in appendix B.
When the fitness structure is linear, a system of this kind
behaves as if simple assortment applied, with the F pa-
rameter now representing a coefficient of relatedness. Such

Linear fitness structure

Nonlinear fitness structure

Random network formation Altruist lost
Nonrandom network formation

matter

Within simple-assortment model No frequency dependence, no polymorphic

equilibria

Only means of neighborhood distributions

Altruist lost

Higher-order moments of distributions may
matter

Frequency dependence, polymorphic equili-
bria possible




a life cycle may apply to organisms that form nests (e.g.,
eusocial insects) and various social microbes such as the
amoeba Dictyostelium discoideum and the bacterium My-
xococcus xanthus (Velicer et al. 2000; Strassmann and
Queller 2007).

Plants have significant interactions between neighbors
(including shading and interaction between roots), and
some annuals may approximate the periodic dispersal stage
of our model. Last, the model may have some application
to colonially nesting birds, in which spatially organized
networks of breeding pairs are formed anew on breeding
sites each year and behavioral interactions between neigh-
bors may be very significant.

Acknowledgments

We thank J. Mitteldorf and one anonymous reviewer for
helpful comments on a previous version of this manu-
script. We are especially grateful to S. Rice for pointing
out helpful simplifications of some of our results. This
work was supported in part by National Science Foun-
dation grant 0717486 awarded to B.K.

Literature Cited

Crisp, D. J. 1961. Territorial behaviour in barnacle settlement. Journal
of Experimental Biology 38:429-446.

Fletcher, J. A., and M. Doebeli. 2009. A simple and general expla-
nation for the evolution of altruism. Proceedings of the Royal
Society B: Biological Sciences 276:13-19.

Gore, J., H. Youk, and A. van Oudenaarden. 2009. Snowdrift game
dynamics and facultative cheating in yeast. Nature 459:253-256.

Greig, D., and M. Travisano. 2004. The Prisoner’s Dilemma and
polymorphism in yeast SUC genes. Proceedings of the Royal So-
ciety B: Biological Sciences 271:525-526.

Grosberg, R. K., D. R. Levitan, and B. B. Cameron. 1996. Evolutionary
genetics of allorecognition in the colonial hydroid Hydractinia sym-
biolongicarpus. Evolution 50:2221-2240.

Hamilton, W. D. 1964. The genetical evolution of social behaviour.
I. Journal of Theoretical Biology 7:1-16.

. 1975. Innate social aptitudes of man: an approach from
evolutionary genetics. Pages 133—-155 in R. Fox, ed. Biosocial an-
thropology. Wiley, New York.

Kerr, B., and P. Godfrey-Smith. 20024. Individualist and multi-level

Ephemeral Networks 911

perspectives on selection in structured populations. Biology and

Philosophy 17:477-517.

. 2002b. On Price’s equation and average fitness. Biology and
Philosophy 17:551-565.

Knight-Jones, E. W. 1953. Laboratory experiments on gregariousness
during settlement in Balanus balanoides and other barnacles. Jour-
nal of Experimental Biology 30:584-599.

Lieberman, E., C. Hauert, and M. A. Nowak. 2005. Evolutionary
dynamics on graphs. Nature 433:312-316.

Matessi, C., and S. D. Jayakar. 1976. Conditions for the evolution of
altruism under Darwinian selection. Theoretical Population Bi-
ology 9:360-387.

Mitteldorf, J., and D. S. Wilson. 2000. Population viscosity and the
evolution of altruism. Journal of Theoretical Biology 204:481-496.

Nowak, M. A, and R. M. May. 1992. Evolutionary games and spatial
chaos. Nature 359:826-829.

Nunney, L. 1985. Group selection, altruism, and structured-deme
models. American Naturalist 126:212-230.

Ohtsuki, H., C. Hauert, E. Lieberman, and M. A. Nowak. 2006. A
simple rule for the evolution of cooperation on graphs and social
networks. Nature 441:502-505.

Rainey, P. B, and K. Rainey. 2003. Evolution of co-operation and
conflict in experimental bacterial populations. Nature 425:72-74.

Strassmann, J. E., and D. C. Queller. 2007. Altruism among amoebas.
Natural History 116:24-29.

Taylor, P. D. 1992. Altruism in viscous populations: an inclusive
fitness approach. Evolutionary Ecology 6:352—356.

Velicer, G. J., L. Kroos, and R. E. Lenski. 2000. Developmental cheat-
ing in the social bacterium Myxococcus xanthus. Nature 404:598—
601.

Veliz, D., P. Duchesne, E. Bourget, and L. Bernatchez. 2006. Genetic
evidence for kin aggregation in the intertidal acorn barnacle (Semi-
balanus balanoides). Molecular Ecology 15:4193-4202.

Wilson, D. S. 1975. A theory of group selection. Proceedings of the
National Academy of Sciences of the USA 72:143-146.

. 1983. The group selection controversy: history and current

status. Annual Review of Ecology and Systematics 14:159-187.

. 1990. Weak altruism, strong group selection. Oikos 59:135—

140.

Wilson, D. S., G. B. Pollock, and L. A. Dugatkin. 1992. Can altruism
evolve in purely viscous populations? Evolutionary Ecology 6:331—
341.

Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding
and selection in evolution. Proceedings of the Sixth International
Congress of Genetics 1:257-266.

Associate Editor: Sean H. Rice
Editor: Ruth G. Shaw



