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No one knows whether death, which people fear to be the greatest evil, might
not be the greatest good.

Plato, The Apology of Socrates

Summary

The use of model laboratory communities, model organisms, and mathematical
models has deeply enriched our understanding of the causes and conse-
quences of toxin production in bacteria. In particular, such models have pro-
vided much insight into the dynamics of microbial communities with toxin
producers. Both experimental and theoretical approaches have suggested
that population structure can be critical to the initial invasion of a toxin-
producing strain. Furthermore, spatial structure may play a central role in
the maintenance of diverse assemblages of toxic and non-toxic strains.
Models have also revealed some counter-intuitive predictions, such as the
evolution of competitive restraint in communities with toxin-sensitive, toxin-
resistant, and toxin-producing bacteria. Toxin production itself is a dramatic
form of niche construction, where producing strains alter the chemical
nature of their surroundings. Such modification feeds back to affect the ecol-
ogy and evolution of all community members. Models have helped greatly to
clarify the effects of this feedback.

6.1 Introduction

Allelopathy, defined as the suppression or death of one organism due to the
toxic chemicals excreted by another organism, is a ubiquitous phenomenon
within microbial communities. In bacterial assemblages, the agents of allelo-
pathic interaction are the bacteriocins. Bacteriocins are narrow-spectrum
antimicrobial proteins found within nearly every major lineage of Bacteria
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(Riley and Wertz 2002a, 2002b). Given that bacteriocinogenic (toxin-producing)
strains kill closely related non-producing strains, bacteriocins are commonly
interpreted to be anticompetitor compounds (Riley 1998; Riley and Gordon
1999). Over the past few decades, there has been much interest in exploring
the microbial dynamics of toxic consortia (Adams et al. 1979; Chao and Levin
1981; Levin 1988; Frank 1994; Tan and Riley 1996; Durrett and Levin 1997;
Iwasa et al. 1998; Gordon and Riley 1999; Pagie and Hogeweg 1999; Nakamaru
and Iwasa 2000; Czárán et al. 2002; Kerr et al. 2002; Czárán and Hoekstra
2003; Kirkup and Riley 2004). Some of these studies have shown that
Socrates’ insight carries particular salience for communities with bacterio-
cinogenic members – allelopathy may play a critical role in maintaining
diversity in these systems (Durrett and Levin 1997; Pagie and Hogeweg 1999;
Czárán et al. 2002; Lenski and Riley 2002; Kerr et al. 2002).

The best-studied case of microbial allelopathy is found in the bacterium
Escherichia coli, which possesses many toxic strains. In E. coli, the gene
encoding the toxin (termed a colicin) is housed on a plasmid along with a
constitutively expressed immunity gene (conferring protection against the
action of the colicin) and a lysis gene (usually expressed under conditions of
stress, causing lysis of the cell and subsequent release of the colicin; James
et al. 1996). Thus, in E. coli (as well as other Gram-negative bacterial species)
bacteriocinogenic cells die in the process of releasing their toxins. A plausible
interpretation is that the lethal release of toxins kills non-producing com-
petitors, promoting the spread of remaining clone mates that carry the plas-
mid encoding immunity to the toxin. However, under precisely what
circumstances would such lethal production evolve? And in communities
with producers, what are the expected population-level consequences?

Models have proven extremely useful in answering such questions. Indeed,
much of the current understanding of bacteriocin systems has come through
the use of models, taken broadly to include model organisms (such as E. coli),
model laboratory communities, and theoretical models. The foundational
studies of bacteriocin-mediated community dynamics were done with E. coli
in experimental microcosms (Adams et al. 1979; Chao and Levin 1981), and
laboratory communities have continued to provide insight, both in vitro (Tan
and Riley 1996; Riley and Gordon 1996; Gordon and Riley 1999; Wiener 2000;
Kerr et al. 2002; Massey et al. 2004) and in vivo (Kirkup and Riley 2004;
Massey et al. 2004). Such studies are often motivated by one of two related
questions: how does toxin production arise? And how does toxicity influence
the dynamics of the community?

The latter question has been targeted by several theoretical biologists
studying bacteriocin systems. Given the large number of different bacterio-
cinogenic constituents in natural microbial communities, theoreticians have
been nearly singularly motivated by providing mechanisms of diversity
maintenance. In the process, theoretical biologists have brought a varied ana-
lytical and computational set of tools to the task, including systems of ordi-
nary differential equations (Durrett and Levin 1997; Gordon and Riley 1999),
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reaction-diffusion equations (Frank 1994; Nakamaru and Iwasa 2000), pair
approximation (Iwasa et al. 1998), configuration field approximation (Czárán
and Hoekstra 2003), and agent-based simulation (Durrett and Levin 1997;
Pagie and Hogeweg 1999; Kerr et al. 2002; Czárán and Hoekstra 2003).

In this chapter, I will review the contributions of models to a deeper
understanding of the causes and consequences of microbial allelopathy. The
study of bacteriocin communities has benefited tremendously from a dia-
logue between theorists and empiricists. I will discuss some of the ways in
which the theory has been inspired by and has, in turn, inspired experimen-
tal work. Finally, I will identify a few areas where the continued interaction
between theoretical work, experimental work and natural history may pro-
duce deeper understanding. The following sections are organized according
to structural complexity of the model bacteriocin community – starting
with the simplest single-producer communities and ending with multiple-
producer communities.

6.2 Dynamics in Two-Strain Communities: Getting over 
the Hump

The simplest bacteriocin community consists of two players: a strain produc-
ing the toxin and a strain sensitive to the toxin. For bacterial species such as
E. coli, toxin production can be costly due to constitutively expressed immu-
nity, plasmid carriage and lethality of production (Riley and Gordon 1999;
Riley and Wertz 2002a, 2002b). This cost has been demonstrated in the labo-
ratory, where the producer has a lower growth rate or a higher mortality rate
than the sensitive strain (Adams et al. 1979; Chao and Levin 1981; Tan
and Riley 1996, but see Dykes and Hastings 1997 for a discussion of Gram-
positive producers). Given this cost, if the sensitive strain and producing
strain were growing in two separate flasks, then the sensitive strain has the
edge. But what happens when both strains are mixed in the same flask?

In well-mixed conditions (such as a shaken flask or a chemostat), bacteri-
ocins released by a producer are evenly distributed throughout the entire
community. This means that the per capita effect of the toxin on the pool of
sensitive cells scales with the number of toxin producers – the more produc-
ers, the higher the per capita mortality rate for the sensitive strain. If there are
very few producers in the community, then the impact of the bacteriocin on
the sensitive pool will be minimal. In such a case, there will be a net growth
advantage for the sensitive strain (as production is costly), and the sensitive
strain can displace the producer. Alternatively, if toxin-producing cells are
common, then the impact on the sensitive pool can be pronounced. Despite
the intrinsic cost of toxin production, a high density of the producer can cre-
ate a heavy extrinsic cost in net growth rate for the sensitive strain. If the bac-
teriocin is sufficiently toxic, the producing strain can displace the sensitive
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strain. Under such cases, there is “strength in numbers” under mass-action
conditions: above some threshold, the producer can administer enough poi-
son to overburden its sensitive competitor.

A mathematical treatment of the competition between the producer and
sensitive strain is given in Box 1. If the producer is sufficiently toxic, the com-
munity is bistable: either the producer excludes the sensitive strain or vice
versa, depending on initial conditions (Levin 1988; Frank 1994; Durrett and
Levin 1997; Iwasa et al. 1998). This bistability has been confirmed in the lab-
oratory: under well-mixed conditions and constant initial density, a producer
displaces its sensitive competitor only if above a critical frequency (Adams
et al. 1979; Chao and Levin 1981). So, invading producers do have a prover-
bial hump to get over.
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Box 1: A mass-action model of a producer strain and a sensitive strain

Durrett and Levin (1997) use the following system of differential equations
to model the community dynamics of a sensitive strain (with density s)
and producer strain (with density p):

s p+ cdt
ds s p s s1 s= - - -b d_ _i i (B1.1)

ppdt
dp

s p p1 p= - - -b d_ i (B1.2)

where bs and bp are the birth rates, and ds and dp are the death rates of
the sensitive and producer strains, respectively, and g measures the per
capita toxic effect of producers on the sensitive strain. We assume that

bs > ds (B1.3)

bp > dp (B1.4)

That is, each strain’s reproductive gains outstrip its losses to intrinsic
death. When alone, the carrying capacity of strain i is 1 − di /bi (the 
carrying capacity approaches the maximum of unity as di → 0 or bi → ∞).
We also require that
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That is, the sensitive strain has a higher carrying capacity than the pro-
ducer when each is in isolation.



The Ecological and Evolutionary Dynamics of Model Bacteriocin Communities 115

The current state of the two-strain community can be expressed as a
point (p, s) on the two-dimensional p–s plane (see Fig. 6.B1a, d). Tracking
community behavior amounts to following the trajectory of this point over
time. The point moves according to Eqs. (B1.1) and (B1.2). One way to get
some insight into the point’s movement is to draw zero net growth
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Fig. 6.B1 Exclusion or bistability in a two-strain community. a The isoclines for the sensi-
tive (blue) and producer (red) strains are shown in the p–s plane. The arrows give the flow
of a point describing the densities of the two strains. When the producer is insufficiently
toxic (g < gc), the isoclines do not cross. From nearly all starting positions, the “community
point” moves to the equilibrium on the s axis (given by the blue sphere). That is, the sensi-
tive strain displaces the producer. b Here, we see the same dynamics expressed as the fre-
quency of the sensitive strain over time. Despite the starting conditions, the sensitive type
fixes (that is, it approaches a frequency of 1). c A symbolic representation of the commu-
nity dynamics (see Fig. 6.2). The arrow pointing from the producer node to the sensitive
node indicates that the sensitive strain will outcompete the producer under any starting
conditions. d When the producer is sufficiently toxic (g > gc), the isoclines cross and a new
internal equilibrium (the gray sphere) is introduced. This new equilibrium is unstable. In
this community, the initial strain densities become important – if the producer is suffi-
ciently abundant relative to the sensitive strain, then the producer will displace the sensi-
tive strain and vice versa. This is a bistable system where both edge equilibria (the red and
blue spheres) are locally stable. e Now, the sensitive strain fixes only if frequent enough –
otherwise, it goes extinct (and the producer fixes). f The symbolic representation shows
arrows pointing to each node with an unstable internal node in between
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Box 1: Continued

isoclines for each strain (the isocline for each strain is a curve where it
does not change its density).

The isocline for the sensitive strain (found by setting dt
ds 0= ) is a line

in the p–s plane:
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Similarly, the isocline for the producer strain (found by setting dt
dp

0= ) is:
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If the point in the plane (giving the strains’ densities) is above the sen-
sitive’s isocline, then it must move downward (because the density of the
sensitive strain is on the vertical axis, and if s > 0, then s>(1 − ds /bs ) −
(1 + g /bs ) p & ds/dt < 0). On the other hand, if the point is below the sen-
sitive’s isocline, it must move upward. Simultaneously, if a point is above
the producer’s isocline, then it must move leftward (because the density of
the producer is on the horizontal axis, and if p>0, then s>(1 − dp /bp ) − p
& dp/dt < 0). By contrast, if the point is below the producer’s isocline,
then it must move rightward.

Therefore, the positioning of the isoclines (whether and how they cross)
can yield important information about community dynamics. In this two-
strain system, there is a critical toxicity of the producer
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By assumptions (B1.3), (B1.4) and (B1.5), gc > 0. If g < gc (that is, the
producer is not very toxic), then the isoclines do not cross in the positive
quadrant of the p–s plane (see Fig. 6.B1a, where the sensitive isocline is in
blue and the producer isocline is in red). The arrows in Fig. 6.B1a trace out
the potential movement of a point giving the strain densities. Note that
the arrows cut the blue line horizontally (because vertical movement of the
point corresponds to changes in the sensitive strain, and the sensitive
strain does not change its density on its isocline), and the arrows cut
the red line vertically (because horizontal movement of the point corre-
sponds to changes in the producer, and the producer does not change its
density on its isocline).

As the figure shows, from nearly any starting condition, the community
moves to the boundary equilibrium (0,1 − ds /bs ) given by the blue sphere,
where the sensitive strain excludes the producer. There also exists an
unstable equilibrium (1 − dp /bp ,0) given by the red sphere (introducing
sensitive cells into a population of producers at the producer carrying



Both the mathematical and empirical results discussed above depend crit-
ically on the assumption of a well-mixed community. In an ingenious exper-
iment, Chao and Levin (1981) competed a producer and a sensitive strain of
E. coli in two different habitats: (1) a well-mixed broth-filled flask and (2) an
agar-filled Petri dish. They found bistability in the stirred flask (the producer
displaced the sensitive strain only when above a critical threshold). However,
the producer always displaced the sensitive strain in the spatially structured
dish (i.e., even if the producer was extremely rare, it displaced the sensitive
strain). So, spatial structure had effectively leveled the producer’s hump.
Why might this be?

Consider a scenario in which producers are very rare in the Petri dish. In
such a spatially structured environment, the toxin released by a producer is
not distributed to all members of the community. Rather, the sensitive neigh-
bors of producers experience a disproportionately high dose of the toxin. As
a consequence, the mortality rate of sensitive cells near toxin-producing cells
is higher than that of the average sensitive cell. Given that reproduction also
occurs locally, the space liberated near a producer (through the elevated
deaths of sensitive cells) is disproportionately available to toxin-producing
cells. In this way, small clumps of producers can “toxically clear-cut” sensi-
tive cells at their periphery and radiate outward into a sea of sensitivity (see
Fig. 6.1). Since Chao and Levin’s pioneering study, the loss of bistability in
structured bacteriocin communities has been demonstrated theoretically
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capacity would lead to the exclusion of producers by the invading sensi-
tive strain). In Fig. 6.B1b, we see that the frequency of the sensitive strain
approaches unity despite starting conditions (Fig. 6.B1c shows this behav-
ior schematically). Thus, without sufficient toxicity, the producer always
goes extinct in head-to-head competition.

If the toxicity of the producer is above the critical level (g > gc), then
both boundary equilibria become locally stable and the isoclines cross at
the point ((bs dp )/(bpg ) − ds /g ,1 + ds /g - (1 + bs /g )dp /bp ) in the positive
quadrat. This point is an unstable equilibrium (this can be shown locally
using linear stability analysis; see the Appendix). From most starting posi-
tions, either the sensitive strain displaces the producer or vice versa (see
Fig. 6.B1d). Thus, initial community composition becomes important in
determining which strain dominates. Generally, if sufficiently abundant,
the producer displaces the sensitive strain, otherwise it goes extinct. This
is shown in Fig. 6.B1e (and schematically in Fig. 6.B1f). This bistability was
demonstrated in vitro with E. coli (Adams et al. 1979; Chao and Levin
1981).



through lattice-based simulation (Durrett and Levin 1997) and pair approxi-
mation (Iwasa et al. 1998).

Given the above theoretical and experimental results, the prospect for the
long-term coexistence of producer and sensitive strains looks fairly grim. In
well-mixed habitats, one of the two strains is predicted to displace the other,
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Fig. 6.1 The spatial advance of a producer strain. a A photograph of a bacterial community
growing on the surface of an agar plate. The bacterial patches highlighted in red are producers
(E2 colicinogenic E. coli) and the bacterial patches highlighted in blue are sensitive to the bac-
teriocin. The cell-free areas between the strains are zones of inhibition, where diffused toxin
from the producer has prevented growth of the sensitive strain. b A photograph of the same
field taken 24 h later (a velvet transfer of the community onto a new agar plate allowed for fur-
ther growth without disrupting the spatial configuration). The producer patches have closed in
on both sides of the sensitive patch. In this way, the producer (which grows to lower density on
agar plates) can displace the sensitive strain through local toxic killing
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depending on initial conditions. The addition of spatial structure simply tips
the scales in favor of the producer. Are there circumstances under which we
would expect the two strains to coexist?

Frank (1994) took a reaction-diffusion approach to modeling this two-
strain system. He showed that if there is spatial heterogeneity in resource
concentration, then both strains can stably coexist. In his model, toxin-
producing cells inhabit resource-rich areas (where competition for resources
is muted), while sensitive cells dominate the resource-poor areas (where
resource competition is intense). Ultimately, Frank’s model explains diver-
sity by invoking underlying environmental heterogeneity. Although
such spatial heterogeneity is not only plausible but probable, Frank’s model
does stimulate the following question: is it possible to maintain diversity even
in a spatially homogeneous system?

In a recent paper, Czárán and Hoekstra (2003) demonstrate that the
answer to this question is “yes”. Their model assumes that the microbial
community is distributed across many sites; collectively, the sites comprise
a “metapopulation”. Each site has the same properties (i.e., there is no under-
lying heterogeneity in this model), and the microbes are assumed to disperse
among sites. If a site is simultaneously colonized by both sensitive cells and
toxin-producing cells, then the producers will exclude the sensitive cells.
However, the authors assume that the fast-growing sensitive cells hit high
density (while the producer population is still at low numbers) before going
locally extinct (as the producer increases to high density). While at high den-
sity, the sensitive cells migrate to other sites (whereas the low density pro-
ducers do not). Thus, even though the fate of any sensitive strain is local
extinction at a site through the toxic killing of a colonizing producer, the sen-
sitive strain can nonetheless persist by embracing a nomadic lifestyle. As long
as empty sites are continually being generated (i.e., there is some probability
that a community at any given site will crash), the rapidly colonizing sensi-
tive strain can persist globally. Such a model might be especially relevant for
explaining diversity in bacteriocinogenic enterics (such as species of
Citrobacter, Enterobacter, Escherichia, Hafnia, Klebsiella, Serratia, etc.),
where the intestinal tracts of multiple hosts form a metapopulation.

Another explanation of the coexistence of producer and sensitive strains
relies on the presence of a third strain of bacteria. We now turn to such three-
member communities.

6.3 Dynamics in Three-Strain Communities: 
Playing Rock–Paper–Scissors

Cells sensitive to a bacteriocin will occasionally experience mutations that
render them resistant. In E. coli, resistance often involves loss or alteration in
a membrane-associated protein that binds or translocates the toxin (James
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et al. 1996; Feldgarden and Riley 1998, 1999; Riley and Gordon 1999).
Resistance is different than immunity. Producer immunity involves a consti-
tutively expressed immunity protein that binds and neutralizes the pro-
ducer’s bacteriocin, whereas resistance is often engendered by a failure of the
non-producing cell to bind or import the toxin in the first place.

Under some circumstances, the resistant strain will have a growth rate
intermediate between that of sensitive and producer strains. The resistant
strain may grow slower than the sensitive strain because the membrane
proteins that bind or translocate bacteriocins often perform other cell func-
tions (e.g., nutrient uptake), and thus their loss or alteration can compro-
mise such functions. On the other hand, the resistant strain will grow faster
than the producer when the costs of resistance (e.g., compromised nutrient
uptake) are less than the costs of bacteriocin production (e.g., plasmid car-
riage, constitutive immunity, lethal synthesis). Given this ordering, a sensi-
tive strain will outgrow a resistant strain, a resistant strain will outgrow
a producer, and a sufficiently common producer can displace a sensitive
type through toxic killing. Such a relationship is analogous to the children’s
game of rock–paper–scissors (indeed, an easy way to remember this is to
look at the first letters of “resistant–producer–sensitive”, although unfortu-
nately, according to the first letters alone, the actual dynamic turns oppo-
site to the rock–paper–scissors game). This non-transitive dynamic has
been found to hold for E. coli in vitro (Kerr et al. 2002) and in vivo (Kirkup
and Riley 2004).

There has been a fair amount of theoretical interest in the dynamics of
such rock–paper–scissors communities (Gilpin 1975; Durrett and Levin 1997;
Riley and Gordon 1999; Nakamaru and Iwasa 2000; Kerr et al. 2002). In some
non-transitive communities, the three players can coexist stably. However,
under mass-action conditions, this is not the case for the resistant–
producer–sensitive community. Using a system of ordinary differential equa-
tions, Durrett and Levin (1997) show that one strain always drives the other
two extinct. Actually, the above resistant–producer–sensitive community is
a special case of the more general Durrett and Levin model. The sensitive
strain is predicted to dominate the well-mixed community (Nakamaru and
Iwasa 2000). In the Appendix, we prove that sensitivity is an evolutionarily
stable strategy (ESS) for a simple three-strain model.

One way to visualize the dynamics in this three-strain community is to
use a de Finetti diagram. Here, a single point inside or on a triangle carries
all the information to deduce the frequencies of the three strains: each of
the three vertices is labeled with one of the three strains, and the frequency
of each strain is given simply by the normalized distance from the point
to the edge opposite to the relevant vertex. For instance, a point on the
“sensitive” vertex corresponds to a community fixed for sensitive types,
whereas a point on the edge connecting the “resistant” and “producer” ver-
tices corresponds to a community without any sensitive cells, and a point in
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the center of the triangle corresponds to a community with equal frequen-
cies of each strain.

In Fig. 6.2a, we give the “boundary dynamics” on a de Finetti diagram for
the rock–paper–scissors game (Frean and Abraham 2001; Czárán et al. 2002).
We see that any community comprised of only “rock” and “paper” fixes for
paper (since paper beats rock), any community of only “paper” and “scis-
sors” fixes for scissors, and any community of only “scissors” and “rock”
fixes for rock. In Fig. 6.2b, we show the dynamics when all three players are
present – and we see continued cycles. In Fig. 6.2c, we give the boundary
dynamics for the resistant–producer–sensitive game (when the producer is
fairly toxic). Here, we see that we do not have a simple flow from one vertex
to the next on the outside of the triangle. Rather, on the “sensitive–producer”
edge we have flow going in both directions – both the sensitive pool and pro-
ducer pool will exclude the other when they are sufficiently frequent in a two-
strain community (see Fig. 6.B1f in Box 1). This is another appearance by the
bistability described above. The hump (represented as a small gray point on
the sensitive–producer edge in Fig. 6.2c) has reemerged. In Fig. 6.2d, we see
that the dynamics are quite different than in the strict rock–paper–scissors
game – the sensitive strain excludes the others from nearly every starting
condition (see Nakamaru and Iwasa 2000, and the Appendix). Do note that
these models assume infinite population sizes, and often the dynamical tra-
jectory can come very close to the producer–resistant edge of the triangle
(where the sensitive pool is extremely rare). Thus, in a finite population, one
might often observe extinction of the sensitive strain and consequent fixation
of the resistant strain (Kerr et al. 2002).

Interestingly, when this same three-member community is spatially
structured (e.g., modeled as cells occupying the points of a lattice where
reproduction and interaction are localized), all three strains can coexist
(Durrett and Levin 1997; Kerr et al. 2002). Due to local reproduction in a
spatially structured environment, clumps of each of the three strains form,
and these clumps chase one another at their boundaries. Sensitive patches
chase resistant patches, resistant patches chase producer patches, and pro-
ducer patches in turn chase sensitive patches. Thus, all clumps are simulta-
neously chasing and being chased, and the upshot of this shifting mosaic is
that all strains are maintained (see Box 2). By propagating three strains of
E. coli in a well-mixed habitat (a stirred flask) and a structured habitat (the
surface of an agar plate), Kerr et al. (2002) experimentally demonstrated
that spatial structure can promote the maintenance of diversity in a bacte-
riocin community. In a sense, spatial structure in these cases obliterates the
“hump” on the sensitive–producer edge of the de Finetti diagram (Durrett
and Levin 1997; Iwasa et al. 1998). In Fig. 6.2f, we see simulated dynamics
from the lattice-based model described in Box 2. This behavior is much
closer to the rock–paper–scissors game of Fig. 6.2b (with the caveat that the
arrows flow in the opposite direction).
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petition outcomes. For instance, since rock beats scissors, the point giving frequencies “flows”
from the scissors vertex toward the rock vertex (rock “competitors” replace scissors “competi-
tors”). b When all three competitors (rock, paper, and scissors) are simultaneously present, the
point is inside the triangle. The community dynamics are shown for Frean and Abraham’s
(2001) rock–paper–scissors model (we set their Pr = Ps = Pp = 0.7). The trajectories are closed
loops – the frequencies of each competitor oscillate indefinitely (where the amplitude of oscil-
lation depends on starting frequencies) and all three strains are maintained. c This schematic
gives the resistant–producer–sensitive dynamics in a well-mixed habitat (see Appendix). The
thick arrows indicate that the sensitive strain will outcompete the resistant strain, and the resist-
ant strain will outcompete the producer. However, along the edge connecting the sensitive and
producer vertices, there is a bistability (if producers are sufficiently common, they displace sen-
sitive cells and vice versa – see Box 1). d The interior dynamics are noticeably different from
the rock–paper–scissors game – the sensitive strain ends up dominating the community. e In
the spatial version of the resistant–producer–sensitive dynamics, the rock–paper–scissors game
reemerges (although the arrows flip because the pairwise competitions reverse when using the
same r–p–s lettering on the triangle). f When all three strains are present in a finite structured
lattice, the community cycles into a stable oscillating coexistence (see Box 2)
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Box 2: A lattice-based three-strain model

The following approach is a slight modification of the agent-based simu-
lations in Durrett and Levin (1997). A virtual community of sensitive cells,
producers and resistant cells occupy the points of an L × L square lattice
with wrap-around boundaries. To start the simulation, every point in the
lattice is randomly assigned one of the following states: {S, P, R, E}, where
S represents a point occupied by a sensitive cell, P is a point with a pro-
ducer, R is a point with a resistant cell, and E is an empty lattice point. The
community dynamics are given by an asynchronous updating scheme, in
which a random sequence of focal points in the lattice are picked and the
state of each focal point is changed probabilistically. For instance, an S→E
transition describes the death of a sensitive cell, whereas an E→P transi-
tion describes the “birth” of a producer. The probabilities of specific state
changes of a focal point depend not only on its current state, but also
potentially on the states of points in its neighborhood. For instance, a sen-
sitive cell surrounded by toxin-producing cells has a higher probability of
death (i.e., the S→E transition is more likely) than an isolated sensitive
cell.

By varying the size of the neighborhood, the scale of ecological
processes (such as toxic interaction, competition for space, and dispersal)
can be controlled. If we make the neighborhood small, then dispersal and
interaction become spatially restricted. For instance, the neighborhood
might be the eight nearest lattice points around a focal point (this is called
a Moore neighborhood). Alternatively, we might make the neighborhood
of a focal point the entire lattice (minus the focal). For such a “Global”
neighborhood, the community behaves like a well-mixed system.

If we pick an empty point to update, then it becomes filled with strain i
(i ∈{S,P,R}) with probability fi, where fi is the fraction of the empty point’s
neighborhood filled with strain i. If a point occupied by strain i is picked,
then it goes to an empty state (a death event) with probability ∆i. While ∆P
and ∆R are assumed to be constant parameters, ∆S is not; the death rate of
a sensitive cell is assumed to increase linearly with the fraction of produc-
ers in its neighborhood:

0 f,S S P= + xD D (B2.1)

where ∆S,0 gives the intrinsic probability of a sensitive cell’s death (i.e.,
when there are no producers in its neighborhood) and t measures the 
toxicity of the producer (t is similar to the g parameter in Box 1). To 
guarantee non-transitivity in this system, the following is assumed:

0 < < < 1,S R P
S

+
+
x
x

D D D
D

(B2.2)
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Box 2: Continued

In words, conditions (B2.2) simply state that there is a net growth hier-
archy with the sensitive strain on the top, the resistant strain in the mid-
dle, and the producer on the bottom. However, the producer is above a
critical toxic level, which yields a non-transitive competitive dynamic.

When this three-strain community is simulated using a Moore neigh-
borhood, all three strains coexist under many different parameter settings.
Because dispersal is local, clumps of the three strains form and these
clumps chase one another at their boundaries – S clumps chase R clumps,
R clumps chase P clumps, and P clumps chase S clumps (see Fig. 6.B2a, b).
However, when a Global neighborhood is used, diversity is rapidly lost
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Fig. 6.B2 Lattice-based simulations. a A snapshot of a 300 × 300 structured lattice after 750
epochs (an epoch is L × L = 300 × 300 updates). Sensitive cells are blue, producers are red
and resistant cells are yellow. A Moore neighborhood was used, and the parameters were 
∆S,0 = 1/4, ∆P = 1/3, ∆R = 0.312, and t = 0.65. Substantial clumping can be observed in this 
picture of the lattice. These clumps chase one another across the lattice according to the
non-transitive dynamic. b The population dynamics over 10,000 epochs showing that all
three strains persist for long periods of time. c A snapshot of a 300 × 300 unstructured lat-
tice after 50 epochs. A Global neighborhood was used with the same parameters as for parts
a, b. In this case, there is no spatial clumping. d Diversity is rapidly lost from the Global
neighborhood simulation



6.4 Evolution in Three-Strain Communities: 
Survival of the Weakest

Up to this point, we have considered only ecological dynamics in microbial
communities. Of course, given their large population sizes and short genera-
tion times, it would be inappropriate to ignore evolution. There have been a
few theoretical studies that have considered the effects of evolutionary
change within a rock–paper–scissors system (Frean and Abraham 2001;
Johnson and Seinen 2002). However, there has not been any detailed theoret-
ical or experimental analysis of the evolutionary dynamics within the afore-
mentioned resistant–producer–sensitive system.

As resistance to a bacteriocin arises readily through mutation of sensitive
cells, and the cost of resistance is often variable (Feldgarden and Riley 1998,
1999), it would seem reasonable to consider the possibility that the cost of
resistance can change evolutionarily. One way to model this situation is out-
lined in Box 3. An intuitive expectation is that the resistant strain should
evolve to minimize its cost (e.g., continually lower its death rate or raise its
reproductive rate). What actually occurs in simulations seems bizarre at first
glance: in a spatially structured community with producer and sensitive
strains, the resistant population does not evolve to minimize its cost! Why is
this?
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(see Fig. 6.B2c, d). In the Global neighborhood, the toxic effects of pro-
ducers are distributed globally. This can drive the sensitive strain to very
low levels (unless the producer is not very toxic). Indeed, because our lat-
tice is finite, the sensitive strain often goes extinct. Once one member of a
non-transitive triplet is lost, the final competitive outcome is decided (for
the same reason that a game of “rock–paper” would be much less enter-
taining for schoolchildren than a game of “rock–paper–scissors”). If the
sensitive strain exits the community, then the resistant strain simply out-
competes the producer, and we end up with a monomorphic population.

The simulations with a Global neighborhood correspond closely to the
dynamics given by the set of mean-field ordinary differential equations
(see the Appendix and Fig. 6.2c, d). However, because such mathematical
models assume infinite populations (and thus one can have an arbitrarily
small density of sensitive cells), the sensitive strain is expected to “hang
on” as the resistant displaces the producer, and eventually dominates the
community. However, the outcome for the maintenance of diversity is the
same: diversity is lost in the well-mixed community. Thus, population
structure can be critical to coexistence. This role for spatial structure pro-
moting diversity in a non-transitive bacteriocin community was demon-
strated in vitro with E. coli (Kerr et al. 2002).



The reason is given by the adage “the enemy of my enemy is my friend”.
In a spatially structured habitat, each strain exists as a set of clumps. These
clumps are simultaneously chasing other clumps, and being chased. Now, if
a mutant arises within a resistant clump that has a much reduced cost, then
this mutant will start to outcompete both its fellow resistant types and any
nearby producer cells. In fact, the resulting mutant clump will chase border-
ing producer clumps more rapidly. If the mutant has extremely low costs,
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Box 3: An evolutionary simulation

In order to introduce evolution in the cost of resistance, we consider a
small wrinkle to the lattice-based model in Box 2. Specifically, instead of
fixing the probability of death of a resistant cell as a global parameter ∆R,
we allow every single resistant cell to carry its own ∆R. Within the frame-
work of the model, this ∆R is the genotype of our virtual resistant cell.
When a new resistant cell is “born”, a mutation can occur to change the
death probability. Specifically, if ∆R(parent) is the death rate of a parent,
then we assume that the death rate of an offspring is:

( )

( ( ( ) , ), ) .

( ) . ( )

min

offspring

parent Z with prob

parent with prob 1
,

R

R S

R

P 0

=

+ - +

-

f o n

n

D

D D D

D

max
*

(B3.1)
where m is the probability of mutation and Z is a random variable (for
instance, Z~N(0,s 2) or Z~Unif(–f, f), where s or f relate to the amount
that the death rate can change due to a single mutation). We assume that
the death rate of the resistant cell must always remain intermediate
between the intrinsic death rate of the sensitive strain and the death rate
of the producer – the positive parameters e and n are taken to be small, but
are nevertheless included to guarantee that, despite any evolutionary
change, the non-transitive competitive structure is maintained.

When a resistant population is simulated without other competing
strains, it evolves to minimize the cost of resistance (average ∆R evolves to
the minimum value in the range allowed). However, when evolution
occurs in a three-strain community with local dispersal and interaction
(using a Moore neighborhood), the cost of resistance does not evolve to its
lowest level (see Fig. 6.3). It pays off to exercise competitive restraint in
this non-hierarchical community because such restraint aids the enemy of
your enemy (which, in turn, harms your enemy and thus aids you). An
extremely interesting direction for future experimental work involves
exploration of these counterintuitive spatial evolutionary dynamics within
non-transitive systems.



then the mutant clump can chase a bordering producer clump to extinction,
which puts these mutants face-to-face with a sensitive clump (an interaction
in which they do not fare well). In this way, by continuing to lower costs, a
resistant lineage may “improve itself to death”. The fact that many such
clumps simultaneously exist across a large spatial arena means that the drive
within clumps to reduce the cost of resistance is checked by the enhanced
probability of clump extinction. Strains that exercise restraint (i.e., maintain
relatively high costs) persist by default as their less restrained cousins burn
themselves out.

In Fig. 6.3, we see the maintenance of a non-minimal cost of resistance in
a spatially structured three-strain community. On the other hand, if the
resistant strain evolves alone in a spatially structured habitat, it does evolve
to minimize its cost (Fig. 6.3). In a structured non-transitive community, a
higher cost of resistance retards replacement of producers by resistant cells.
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Fig. 6.3 The evolution of competitive restraint. Shown are the results of a lattice-based simula-
tion (described in Box 2) allowing for the resistant strain to evolutionarily change the cost of
resistance (see Box 3). The parameters used are ∆S,0 = 1/4, ∆P = 1/3, t = 0.55, e = 0.004, n = 0.025,
m = 0.001, and Z~Unif(–0.02,0.02). The death rate of the resistant strain (∆R) can evolve. The
average cost of resistance is simply CR = ∆–R − ∆S,0 where ∆–R is the average death rate of the
evolving resistant strain. The minimum value that CR can obtain is n. A proxy for cost of resist-
ance is CR′ = CR–n. All else being equal, the resistant strain is expected to evolve to minimize
its cost (i.e., we expect CR′ → 0). The black trajectory is the average cost of resistance (CR′) in
a 300×300 square lattice with a Moore neighborhood, where the resistant strain shares the lat-
tice with the producer and the sensitive strain. Here, we see that the cost of resistance does not
evolve to its minimum, but rather remains at higher levels (that is, the average death rate of the
resistant strain is evolutionarily maintained at a value higher than its obtainable minimum). As
a control, the gray trajectory shows evolution of the cost of resistance when the resistant strain
is evolving alone in 107 × 107 lattice (the lattice size was shrunk so that the average density of
resistant cells was roughly the same between simulations). In the case shown (and for several
other simulations at a variety of lattice sizes), the solitary resistant strain immediately evolves
to minimize its cost. Thus, the presence of producer and sensitive strains in a spatially struc-
tured habitat selects for competitive restraint in the resistant strain



By liberating the enemy of their enemy, these costly lineages liberate them-
selves (Tainaka 1993, 1995; Frean and Abraham 2001; Johnson and Seinen
2002). This phenomenon has been dubbed “survival of the weakest” (Frean
and Abraham 2001).

6.5 Dynamics with many Strains: Universal Chemical Warfare

Naturally occurring microbial populations contain several different bacterio-
cinogenic strains (Gordon et al. 1998; Riley and Gordon 1999; Riley and
Wertz 2002a, 2002b). Each distinct producer can be sensitive to the toxin pro-
duced by a different producer within its own (or closely related) species. In
addition, resistance (sometimes to multiple toxins) can be generated through
mutation and is very common in natural populations (Feldgarden and Riley
1998, 1999). What are the dynamical consequences of many interlacing games
of rock–paper–scissors being played out simultaneously? How is such diver-
sity maintained? It turns out that by inspecting such convoluted microbial
chemical warfare, we gain some insight into mechanisms maintaining diver-
sity (Lenski and Riley 2002).

There have been a few models that have considered multiple bacteriocin pro-
ducers with cross-killing abilities. Pagie and Hogeweg (1999) model multiple
producers within a lattice-based simulation framework. They find that within
a spatially structured system, multiple producers can stably coexist. Further, the
type of coexistence depends on the cost of resistance against toxins. If this cost
is low, then the community enters into a “hyperimmunity” mode where most
cells will be resistant to many different toxins, but few cells will produce very
many toxins. However, if this cost is high, the community displays a “multitox-
icity” mode, where cells are resistant to fewer toxins and tend to individually
produce more toxins. Interestingly, the shift from “hyperimmunity” to “multi-
toxicity” is rather abrupt as the cost of resistance increases. Czárán et al. (2002)
build on this earlier model of multiple producers, incorporating horizontal gene
transfer and recombination between strains. Under many circumstances, they
find that their lattice of multiple producers transitions through a “multitoxicity”
mode and settles into a “hyperimmunity” mode.

Spatial structure is an important ingredient in these models – diversity
drops dramatically in a well-mixed environment (Pagie and Hogeweg 1999).
This role of spatial structure has been validated in a few experimental studies
of multiple producers (Tait and Sutherland 2002; Massey et al. 2004). So far,
most experimental work on multi-producer communities has been limited to
pairs of interacting strains. It will be interesting to follow experimentally the
dynamics of larger numbers of microbial players in order to see how well the
predictions of the simulation models play out.

The study of communities with multiple producers will be especially excit-
ing in light of recent observations suggesting that bacteriocins excreted by
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one producer can act as inducers of bacteriocins in other producers (Kuipers
et al. 1995; Kleerebezem et al. 1997, 2004; Tait and Sutherland 2002; Gillor and
Riley, unpublished data). Interestingly, such cross-induction can reintroduce
bistability into the spatial dynamics of a two-strain system (Gillor et al.,
unpublished data). Specifically, cells of a rare invading producer (call the
invading strain A) will induce neighboring resident producer cells (call
the resident strain B) to produce toxin, which in turn will further induce
the invader. This local escalation of chemical warfare can favor the common
producer strain, as it effectively “surrounds” the invading strain with its
toxin. This means that a population of producer strain A can exclude invad-
ing strain B, and a population of producer strain B can exclude invading
strain A. It will be intriguing to see if this potential return to bistability occurs
in spatially structured multiple-producer laboratory communities.

6.6 Discussion

Lewontin (1982, 1983) has suggested that the metaphor of adaptation (in which
organisms that best fit preexistent niches are selected) should be replaced with
a metaphor of construction. Lewontin’s idea is that organisms, through their
physiology, behavior and development, alter their world and thus influence the
very form of their niche. That is to say, niches are not simply “out there” wait-
ing to be filled, but rather are (at least partially) made via the effects organisms
have on their abiotic and biotic surroundings. In Lewontin’s view, the organ-
ism becomes a co-author in its own evolution and ecology. This process has
been labeled niche construction (Odling-Smee et al. 1996, 2003; Laland et al.
1999, 2000), or alternatively ecosystem engineering (Jones et al. 1994, 1997).
The production of bacteriocins within microbial communities is a potent form
of niche construction – a producing cell alters the toxin concentration of its
surroundings, shifting strain composition toward immune and resistant types.

Indeed, this toxic niche construction is one way to form a non-transitive
competitive dynamic. Specifically, with regards to growth rate, the strain on
the bottom of the totem pole (the producer) kills the strain at the top (the
sensitive), thus creating a loop in the competitive interactions. Such non-
transitivity has been found in other systems as well, including side-blotched
lizards (Sinervo and Lively 1996), sessile marine invertebrates (Buss and
Jackson 1979), and yeast (Paquin and Adams 1983). Theoretical work on non-
hierarchically organized communities has shown that such interactions can
promote the maintenance of biodiversity (Huisman and Weissing 1999;
Huisman et al. 2001). Non-transitivity may be an important ingredient in the
persistence of diverse bacteriocin communities, but it seems to require a
partner to get the job done. This partner is population structure.

Because niche construction is ultimately frequency-dependent, toxin pro-
ducers competing with sensitive cells in a well-mixed environment face a
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dynamical hump to get over (Adams et al. 1979; Chao and Levin 1981; Levin
1988; Durrett and Levin 1997; Iwasa et al. 1998). In unstructured habitats,
the signature of this hump is present in the resistant–producer–sensitive
community, changing the dynamics from a straightforward “rock–paper–
scissors” to a “one-winner” outcome (compare Fig. 6.2a, b to c, d).
Population structure (e.g., spatial structure) can effectively eliminate the
hump (Chao and Levin 1981; Durrett and Levin 1997; Iwasa et al. 1998) and
restore the game of rock–paper–scissors. In this spatial game, players stably
chase each other around a structured arena as clumps, with balanced gains
and losses occurring at the boundaries (Durrett and Levin 1997; Kerr et al.
2002). Kirkup and Riley (2004) demonstrated that the same non-transitive
dynamic occurs in the mouse alimentary tract, a spatially structured habitat.
In addition, spatial structure is an important ingredient in the coexistence of
multiple-producer strains (Pagie and Hogeweg 1999; Czárán et al. 2002).

It is worthwhile to highlight the nature of the explanations of biodiversity
maintenance offered by the above models. While biodiversity in the system
can result from exogenous heterogeneity in the underlying substrate (Frank
1994), many of these models describe diversity resulting from endogenous
processes. That is, diversity is a product of the way non-transitive interac-
tions play out in a spatially structured world. In this sense, diversity “flows
from within” the system. Part of the recent interest in spatial ecology (Durrett
and Levin 1994a, 1994b; May 1999; Bolker et al. 2003) derives from an inter-
est in understanding how global patterns result from local processes (Hassell
et al. 1994; May 1999; Wootton 2001). This idea of system self-organization is
the natural outgrowth of localized niche construction, where the effects
organisms have within neighborhoods scale up to influence the form of the
entire community.

Models have been indispensable in the study of bacteriocin community
self-organization. Part of this success has depended on the sustained interac-
tion between those exploring theoretical models and those experimenting
with model communities in the laboratory. For instance, Chao and Levin
(1981) described frequency-dependence in sensitive–producer communities
of well-mixed E. coli, and then Levin (1988) analytically demonstrated the
bistability. As another example, Chao and Levin (1981) demonstrated that the
spatial structure afforded by soft agar poured in a Petri dish could eradicate
the frequency-dependence and then Durrett and Levin (1997), using cellular
automata, confirmed these empirical observations (see also Iwasa et al. 1998).
As yet another example, Durrett and Levin (1997), using lattice-based mod-
els, predicted that spatial structure would be required for long-term coexis-
tence of the resistant–producer–sensitive community, and this was
empirically confirmed 5 years later by Kerr et al. (2002). There has been
mutual benefit by maintaining an active dialogue between theoretical and
empirical work.

And such dialogue will certainly facilitate future understanding of these
communities. There are several questions ripe for exploration. What are the
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evolutionary dynamics in resistant–producer–sensitive communities? Will
we actually observe a form of “survival of the weakest” in laboratory com-
munities? What are the ecological and evolutionary dynamics of communi-
ties with multiple bacteriocin producers? What are the dynamics of diverse
bacteriocin communities in natural settings? What effects will cross-induc-
tion (another form of niche construction) play in these dynamics? Models
will most certainly continue to play an important role in exploring such
issues, and through the study of model systems, the next set of questions will
begin to emerge.
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Appendix

Sensitivity is an ESS in the Well-Mixed RPS Game

Consider the following set of differential equations describing the dynamics of sensi-
tive, producer and resistant strains (see Durrett and Levin 1997, and Box 1):

( )
dt
ds s p r s p s1s s= - - - - +b d c_ i , (A.1)

p pdt
dp

s p r p p1= - - - -b d_ i , (A.2)

r rdt
dr s p r r r1= - - - -b d_ i . (A.3)

This system has an equilibrium at (s,p,r) = ((bs − ds ) /bs ,0,0) = (ŝ,0,0) where only
toxin-sensitive cells exist. Consider a perturbation to this equilibrium, (sŝ + es, ep, er),
where all e values are very small. The dynamics of the perturbations are given by:

dt
d sf = (bs(1−2ŝ) − ds)es − ((bs + γ)ŝ)ep − (bs ŝ)er − bs es(es + ep + er) − γes ep, (A.4)
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b d f b f f f ft_` `i j j, (A.5)

r
r r rdt

d
s1r r r s p= - - - + +

f
b d f b f f f ft_` `i j j. (A.6)

Linearizing the system about (es, ep, er) = (0,0,0), we have

J=f f
" "o , (A.7)
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and the Jacobian is
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The eigenvalues of J give the local stability of the equilibrium (ŝ,0,0). Since J is a
triangular matrix, the eigenvalues line the diagonal. Because we assume

bi > di for all i ∈{s,p,r}, (A.10)
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all of the eigenvalues are negative, which means the equilibrium (ŝ,0,0) is locally sta-
ble and thus toxin sensitivity is an evolutionarily stable strategy (an ESS). The other
fixation equilibria,
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are locally unstable (this can be shown using linear stability analysis as well). Lastly,
under assumption (A.11), there is another equilibrium:
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which also is unstable. Thus, sensitivity to the toxin is the only ESS in this system.
Indeed, from nearly any starting point, the sensitive strain will displace the other two
strains (Nakamaru and Iwasa 2000).
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