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Memory is a fundamental component of learning, a process by which individuals alter their behavior through experience.
Although memory most likely has explicit costs such as synaptic maintenance and metabolic demands, there are also implicit
costs to memory, in particular, the use of information that is no longer appropriate or is incorrect. Specifically, the period of
retrievability for memories, or ‘‘memory window,’’ should be sensitive to the rate of environmental change of information stored
in memory. Much empirical data suggest that memory length—this period of retrievability—changes with both the age and state
of the individual. Here, we use a dynamic programming approach to examine how optimal memory retrieval might change
within the lifetime of the individual learner. We find that optimal memory length varies with both age and state (e.g., energy
reserves) of the organism and that features of the environment determine how this change in memory occurs. In our model,
retrieval decreases as the environment becomes unreliable but roughly increases with the cost of living. Cost of living interacts
with the state of the organism: with high cost of living, an organism in a very poor state should have a long memory length, but an
organism in a very good state with low costs of living should have a short memory length. Finally, we find there are circumstances
where it is optimal for memory retrieval to decline toward the end of the lifetime. Because this framework does not incorporate
inevitable degradation of neural mechanisms, this result implies that memory loss with age might actually be adaptive. Key words:
dynamic programming, environmental variability, learning, memory, optimality, stimulus reliability. [Behav Ecol 20:1096–1105
(2009)]

Learning is responsible for many of the flexible behaviors
animals use when adjusting to changing environments. Ul-

timately, learning depends on an animal’s ability to store and
retrieve information about its world, that is, learning is tightly
entwined with the memory of that information (Bouton 1994;
Shettleworth 1998). Consequently, the value of memory often
relates to the value of learning. On a simple level, learning is
valuable when information stored in memory (e.g., a good
response to a stimulus) remains useful over time (e.g., the
same response to the same stimulus continues to be good).
However, learning and memory lose value when the environ-
ment changes in ways that make learned responses unreliable.
Indeed, possessing memory might be costly if it repeatedly
leads an organism to employ inappropriate behaviors (e.g.,
if the environment changes extremely rapidly making remem-
bered responses perpetually inappropriate). This is similar to
the effects of ecological or evolutionary traps, where previ-
ously reliable information leads to a maladaptive outcome
because the situation has changed (Schlaepfer et al. 2002).
If memory is evolutionarily adaptive, one would expect that
various properties of memory (encoding, consolidation, re-
trieval, etc.) would be tuned to the historical rate of environ-
mental change. Several mathematical models have suggested

that the amount of environmental variability influences the
evolutionary advantages of learning and memory (Arnold
1978; McNamara and Houston 1987; Stephens 1987; Mangel
1990; Cohen 1991; Stephens 1991; Bergman and Feldman
1995; Feldman et al. 1996; Kerr and Feldman 2003).
Given thatmemory is employed throughout the lifetimeof an

individual, should memory length, that time for which memo-
ries are retrievable, change within that lifetime in response to
particular patterns of environmental variability? For simplicity
and tractability, most learningmodels have incorporatedmem-
ory as a fixed quantity (McNamara and Houston 1987; Mangel
1990; Shafir and Roughgarden 1996; Kerr and Feldman 2003),
often as a ‘‘sliding window’’ of constant length (but see
Smulders and Dhondt 1997; Hirvonen et al. 1999).
However, overwhelming evidence suggests that memory

changes over the lifetimes of individuals. For instance, aspects
of memory have been shown to decline with age in a large num-
ber of species, from humans to crustaceans (Tomsic et al. 1998;
Davis et al. 2003; Punzo and Chavez 2003; Shukitt-Hale et al.
2004). In humans, this trend is present in healthy older
adults—it is not attributable solely to the effects of Alz-
heimer’s and/or dementia (e.g., Craik and Jennings 1992;
Zelinski and Burnight 1997; Davis et al. 2001). One explana-
tion for memory loss suggests that aged individuals acquire
such a large number of memories that retrieval errors (Spear
1973; Squire 1989; Cohen 1996), perhaps caused by mecha-
nisms such as memory interference, become more common
(Bouton and Moody 2004; Mery and Kawecki 2004). Another
explanation attributes memory loss to the inevitable decay of
synaptic connections with age (Salthouse 1996). Poor memory
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or learning abilities are also found at very young ages (Guo
et al. 1996; Spreng et al. 2002). Known as infantile amnesia,
this is often explained as the result of the developing brain
(Neissen 2004). In addition to age, the physical state of the
individual (such as its energy reserves or stress level) may in-
fluence learning and memory (McEwen and Sapolsky 1995;
Guo et al. 1996; Xia et al. 1997; Yanai et al. 2004). For in-
stance, whereas acute stress might actually improve memory
in some cases, such as with posttraumatic stress disorder
(McGaugh and Roozendaal 2002), chronic stress and in-
creased cortisol levels can result in memory deficits (McEwen
and Sapolsky 1995; Seeman et al. 1997; Lupien et al. 1998).
In the aforementioned explanations, memory loss results

from the inevitable degradation or inherent constraints in re-
trieval caused by advanced age or prolonged stress. Another
compelling possibility is that memory changemight serve some
evolutionarily adaptive role. Kraemer and Golding (1997) sug-
gest that the primary mechanism for adaptive forgetting may
be in the retrievability of information. Importantly, new evi-
dence suggests that forgetting need not be a passive process
(Anderson et al. 2004; Wylie et al. 2008).
To explore the possibility of evolutionarily adaptive forget-

ting, we use a dynamic programming approach—an estab-
lished method for determining optimal strategies across
lifetimes (Mangel and Clark 1988; Clark 1993; Houston and
McNamara 1999). Within this modeling framework, we focus
on the long-term retrieval of information, assuming that all
experiences of the organism have been successfully encoded
and consolidated. For effective memory, an organism needs
both successful acquisition and retrieval. A failure at any point
along the way results in forgetting. We do not consider mech-
anism, though in our framework forgetting may be due to an
active process like suppression (Anderson et al. 2004), the
decreasing availability of stored information over time, which
Schacter calls transience (Schacter 1999), or due to a simple
failure to retrieve the information (Loftus and Loftus 1980).
We explore the effects of age, physical state, and environmen-
tal conditions on optimal retrieval. Our model suggests that
even if the environment changes at a constant rate, optimal
memory length may actually decline with age.

THE MODEL

Here we consider a learning organism that lives for amaximum
of T discrete time steps, with its age at any point in time given
by the variable t (the number of time steps lived so far). At
each time step, there is a fixed positive probability of death, d.
This organism inhabits an environment with N stimuli to
which it may respond. At every time step, the organism is
exposed to one of the N stimuli (chosen at random with equal
likelihood and independently of past exposures). If the stim-
ulus is unfamiliar, the organism will need to spend some time
learning how to respond appropriately to the stimulus. This
learning process within a time step can be thought of as being
on the timescale of short-term memory. For simplicity, we
assume that the organism that learns about an unfamiliar
stimulus always arrives at a behavior that yields a constant
payoff, which we label pu.
If the stimulus is familiar (i.e., remembered), then the or-

ganism must have interacted with it in a previous time step
and remembers it from that time step. Here, we use a ‘‘window’’
model for memory retrieval—the organism can remember and
retrieve information from the previous m time steps. If the
organism remembers the behavior it employed previously
for a stimulus and employs this behavior again when revisiting
the familiar stimulus, there are 2 possible outcomes: 1) the
appropriate response to the stimulus is the same as it was
before and the organism receives a payoff pc (a payoff for

a correct response) or 2) the appropriate response to the
stimulus has changed and the organism receives a payoff of
pi (a payoff for an incorrect response). Again, for simplicity,
we assume that the payoffs for appropriate or inappropriate
remembered responses have constant values.
Thus, the expected payoff of a familiar stimulus depends on

the rate of change of stimuli. Here, we assume that every stim-
ulus changes independently with probability q every time step
(as q increases, the stimuli become less reliable). We also as-
sume pi , pu , pc, as a correctly remembered behavior saves
the sampling time spent on learning to respond appropriately
to an unfamiliar stimulus (Lewis 1986). However, an incor-
rectly remembered behavior wastes more time than learning
about a stimulus from scratch (e.g., time spent employing the
now inappropriate behavior in addition to time spent learning
the stimulus again). We assume that the payoffs are in terms of
energy reserves, such that time spent learning about stimuli or
time wasted employing incorrect behaviors results in a lower
energy payoff for the time step. At any time, we let the energy
reserves of our organism be x. We restrict x to a range of
values, 0 ! x ! X. We also assume that there is a cost of living,
j, imposed each time step (i.e., energy reserves removed from
the organism due to the metabolic demands of living). The
parameter j is measured in the same units as x (e.g., calories),
and we focus on cases in which the cost of living makes mem-
ory necessary for x to increase over a time step, that is, pi , pu
, j , pc.
In the manuscript, we explore the idea that it may be advan-

tageous for the length of the memory window, m, to vary as
a function of the energy reserves of the organism, x, as well as
its age, t (i.e., m ¼ m(x, t)). Here, we use a dynamic program-
ming approach to find the function that maximizes reproduc-
tive success of our model learner, m*(x, t), where the asterisk
denotes the optimal memory. That is, we ask how the memory
window might optimally change with state and age of the
organism.
To this end, it helps to produce another function that meas-

ures maximal future expected reproduction. We call this func-
tion F(x, t, T), the maximal future expected reproductive
success of an organism at age t in state x (recall that T defines
the maximum lifetime of an organism). Using F as a ‘‘common
currency,’’ the trick to dynamic programming involves writing
a backward recursion in time. In Appendix A, we derive the
following recursion,

F ðx; t; T Þ

¼ ð12 dÞ max
0!m

m
, t

8
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>:

amF ðuðxÞ; t1 1; T Þ
1x½12 bm&F ðcðxÞ; t1 1; T Þ
1 ð12 am 2x½12 bm&ÞF ðiðxÞ; t1 1; T Þ

9
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with

a ¼ N2 1
N

; b ¼ ðN2 1Þð12 qÞ
N

; x ¼ 12 q
11 ðN2 1Þq

; ð2Þ

uðxÞ ¼ chopðx1 pu 2 j; 0; XÞ; ð3Þ

cðxÞ ¼ chopðx1 pc 2 j; 0; XÞ; ð4Þ

iðxÞ ¼ chopðx1 pi 2 j; 0; XÞ: ð5Þ

The function chop simply keeps the state of the organism in
the allowed range between 0 and X. Generally, chop(x ; a, b)
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gives a if x , a, b if x . b, and x otherwise (Mangel and Clark
1988).
Equation 1 can be understood roughly as follows: If the

stimulus at time step t is unfamiliar, then the maximal future
expected reproductive success from time t 1 1 on is given by
F(u(x), t 1 1, T). With memory length m at time t, this occurs
with probability am (see Appendix A). Similarly, if the stimulus
at time t is familiar and if the organism employs an appropri-
ate response, then the maximal future expected reproductive
success from t 1 1 on is F(c(x), t 1 1, T), whereas an
inappropriate response at time t would give F(i(x), t 1 1, T).
With memory length m at time t, the probabilities of ap-
propriate and inappropriate responses to a familiar stimulus
are x(12 bm) and 12 am 2 x(12 bm), respectively. Thus, the
quantity in braces in Equation 1 corresponds to the future
expected reproductive success of an organism with memory
length m at time t given that the organism survives the time
step (which occurs with probability 1 2 d) and remembers
optimally from time t 1 1 onward. To calculate the ‘‘maximal’’
expected future reproductive success at time t (i.e., F(x, t, T )),
we simply need to find the memory length that maximizes the
weighted average in braces—see Appendix A for details.
To begin, we assume that our organism is semelparous—it

reproduces at the end of its lifetime (at age T). The expected
number of offspring will be some function of the final state of
the parent—we call this function U(x). At age T, maximal
future reproductive success is equal to the expected number
of offspring such that F(x, T, T) ¼ U(x). If we specify U(x),
then we can use recursion (1) to obtain F(x, T 2 1, T) for all
possible values of x. In the process of calculating F(x, T 2 1,
T), we will also reveal m*(x, T 2 1). This optimal memory (for
a given x value) is simply the m value that maximizes the
quantity in braces on the right hand side of Equation 1 with
t ¼ T 2 1. Once we have discovered F(x, T 2 1, T) for all
values of x, we can find both F(x, T 2 2, T) and m*(x, T 2 2)
for all values of x by applying recursion (1) again (with
t ¼ T 2 2). Then it is a simple matter to generate both

F(x, T 2 3, T) and m*(x, T 2 3) using recursion (1) yet again.
We can do this over and over again, so that these generated
F values become the stepping stones enabling us to walk
backward further and further in the organism’s lifetime,
revealing the optimal memory for each possible age and
each possible state along the way. See Table 1 for a summary
of the parameters, variables, and functions we have used.

RESULTS

In Figure 1, we give some examples of the optimal memory
surface (the m* function) for different rates of environmental
change (q) and final fitness functions (U). In general, as the
stimuli become more reliable (as q decreases), optimal mem-
ory increases (the surfaces tend to be higher). This is ex-
pected to occur because, as q decreases, the probability of
employing a correct response increases. Thus, there is increas-
ing value to approaching a stimulus as familiar rather than
unfamiliar because the remembered response becomes more
likely to be correct. This means there is increasing incentive to
lengthen the memory window.
For many parameter combinations, we can partition the

lifetime into 2 periods: a memory lift at the beginning of
the lifetime and a memory plateau in the rest of the lifetime
that gently drops or lifts toward the end of the lifetime
(see Figure 1). For intermediate values of stimulus change
(0.05 , q , 0.25), if U is convex (d2U/dx2 . 0), the optimal
memory window can increase at the end of the lifetime
(Figure 1c,d). On the other hand, if U is concave (d2U/dx2

, 0), then the optimal memory window can actually decrease
at the end of the lifetime (Figure 1a,b).

Proxy for optimal memory

To understand the effects of stimulus change (q), payoff struc-
ture (the p’s), and the final fitness function (U), it helps to
consider the following function:

Table 1

Table of parameters, variables, and functions used in the model

Parameters Description

X Number of states for the organism
T Maximum lifetime for the organism (total number of time steps)
N Number of stimuli in the environment
q Probability of stimulus change per time step
j Cost of living for the organism per time step
d Probability of death for the organism per time step
pu Payoff to the organism for a response to an unfamiliar stimulus
pc Payoff to the organism for a correct response to a familiar stimulus
pi Payoff to the organism for an incorrect response to a familiar stimulus
Variables
x State of organism (current level of energy reserves)
t Age of the organism (current number of time steps)
m Memory ‘‘window’’ (the number of time steps back that are remembered)
Functions
u(x) State of organism after employing a response to an unfamiliar stimulus, given that its state before responding was x
c(x) State of organism after employing a correct response to familiar stimulus, given that its state before responding was x
i(x) State of organism after employing an incorrect response to familiar stimulus, given that its state before responding was x
F(x, t, T) Maximal expected future reproductive success of an organism in state x at age t
U(x) Fitness of an organism in state x at age T
H(x) The function to which F(x, t, T) converges as t decreases
B(x, t) Potential benefit of memory for an organism in state x at age t
C(x, t) Potential cost of memory for an organism in state x at age t
m*(x, t) Optimal memory for an organism in state x at age t (an integer)
m**(x, t) Proxy for the optimal memory for an organism in state x at age t (a real number)
mH(x) Approximate optimal memory (the m** proxy using H(x) in lieu of F(x, t, T))
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Gðm;x; tÞ ¼
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<

:

amF ðuðxÞ; t1 1; T Þ
1x½12 bm&F ðcðxÞ; t1 1; T Þ
1 ð12x½12 bm&2 amÞF ðiðxÞ; t1 1; T Þ

9
=
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with a, b, and x given above in Equation 2. From Equation 1,
the integer m value (with 0 ! m ! t) that gives a maximum for
G(m, x, t) is m*(x, t). One way to find a proxy for m* is to treat
G(m, x, t) as a continuous differentiable function of m and
find critical points (by setting @G=@m ¼ 0). A single critical
point exists at

m''ðx; tÞ ¼
lnð11 mðx; tÞÞ1 lnxlnb

lna

ln 1
12 q

; ð7Þ

with m(x, t) being a benefit-to-cost ratio,

mðx; tÞ ¼ Bðx; tÞ
Cðx; tÞ ¼

F ðcðxÞ; t1 1; T Þ2F ðuðxÞ; t1 1; T Þ
F ðuðxÞ; t1 1; T Þ2F ðiðxÞ; t1 1; T Þ: ð8Þ

The potential benefit of using memory is given by the improve-
ment in future expected reproductive success by employing
a correct response to a familiar stimulus in lieu of a response
to an unfamiliar stimulus—this is precisely B(x, t) from Equa-
tion 8. The potential cost of using memory is given by the loss
in future expected reproductive success by employing an in-
correct response to a familiar stimulus in lieu of learning over
a single time step in response to an unfamiliar stimulus—this
is precisely C(x, t) from Equation 8. Thus, without attention to
the probabilities of correct and incorrect responses, m gives
a benefit-to-cost ratio of memory use.
The quantity m** in Equation 7 is a proxy for the actual

optimal memory window (m*, which must be an integer). If
m** is between 0 and t, then the integer below or above m**

gives m* (m* is the integer which yields a larger value for
Equation 6). If m** is negative, then optimal memory is zero,
and if m** is greater than t, then optimal memory is t (see
Supplementary Appendix A).
This proxy for optimal memory depends not only on the ben-

efit-to-cost ratio (m) but also on the probabilities that memory

brings benefits versus costs. These probabilities depend on
the number of stimuli, N, and the rate of stimulus change, q
(which is why there are a, b, and x terms in Equation 7—see
Equation 2). In Figure 2, we show how the probabilities of in-
correct familiar responses (orange bars), unfamiliar responses
(green bars), and correct familiar responses (blue bars) change
with the size of the memory window for different values of q.
From Equation 1, as m grows larger, the probability of a correct
response approachesx, the probability of an incorrect response
approaches 12x, and the probability of an unfamiliar response
goes to zero. As q increases, the probabilities of incorrect re-
sponses at anymemory level also increase (the fractionof orange
increases), which should favor lower memory values. Indeed, we
show in Supplementary Appendix B that when our optimal
memory proxy,m**, is greater than 0, increasing the rate of stim-
ulus change (i.e., decreasing reliability) will promote shorter
memory windows, that is, @m''=@q,0. This result has been de-
rived by treatingm in functionG as continuous; however, whenm
is constrained to integer values, the same general pattern
emerges: stimulus changeability promotes shorter memory win-
dows (see Figure 1).
Also, m** is an increasing function of m (i.e., @m''=@m.0). In

order to explore the effects of m, we need to know something
about F(x, t,T ). Although theprecise analytical formof F(x, t,T )
is difficult to derive, it will generally be a nondecreasing
function of x, given that we assume U(x) is a nondecreasing
function of x. For illustrational purposes in the next section,
we will pretend F assumes simple functional forms (e.g., a linear
function); however, this pretence will not affect most of the
conclusions for more complicated nondecreasing forms of F.

Graphical approach

Let us focus on an organism in state x# at age t (the black
circles in Figure 3). If it employs an incorrect response to
a familiar stimulus, its state changes to i(x#) (the orange solid
arrows in Figure 3). If it employs a response to an unfamiliar
stimulus, its state changes to u(x#) (the green dotted lines and
arrows). And if it employs a correct response to a familiar
stimulus, its state changes to c(x#) (the blue dashed lines and
arrows). We always have i(x) ! u(x) ! c(x) because we assume

Figure 1
Optimal memory m*(x, t) with
X ¼ 50, N ¼ 10, T ¼ 40, d ¼
0.1, j ¼ 12, pi ¼ 5, pu ¼ 10,
and pc ¼ 15. Each surface corre-
sponds to a different value of
the rate of stimulus change (q)
and either a convex final fitness
function U(x) ¼ 100(x/X )4 or
a concave final fitness function
U(x) ¼ 100(x/X )0.25.
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pi , pu , pc. In each case, the maximal future expected
reproductive success is given by the value of F(x, t 1 1, T) at
x ¼ i(x#), x ¼ u(x#), or x ¼ c(x#). From the positions of c(x#),
u(x#), and i(x#), we can visualize the benefit, B(x, t), and cost,
C(x, t), of memory use and thus isolate factors that will affect m.
We see that for constant values of correct and incorrect pay-

offs, pc and pi (i.e., c(x#) and i(x#) remain constant), as the
value of the payoff for an unfamiliar stimulus, pu, decreases
(i.e., as u(x#) decreases), m increases and longer memory win-
dows are favored (compare Figure 3a,b). The quantity pu 2 pi
generally scales with the potential cost of memory, C(x, t). The
potential benefit of memory scales with pc 2 pu. It stands to
reason that as the potential cost of memory decreases and the
potential benefit of memory increases (pu drops while pc and
pi both stay constant), the optimal memory window should be
longer.
We can also start to understand some of the effects of the

state of the organism on memory. Given that we assume that
the cost of living is high (i.e., j . pu), if the state of the
organism is very low, then both i(x#) and u(x#) will be zero
(remember these functions ‘‘chop’’ x into the range of 0 to X ).
Again, the cost of living is the energy reserves removed
from the organism due to the metabolic demands of living.
This can be seen in Figure 3c, where the solid and dotted

arrows point to the origin. Because i(x#) ¼ u(x#) ¼ 0, this
means that C(x#, t) ¼ 0 and m is infinite. As m / N, we know
that m** / N. Thus, when cost of living is high, organisms in
a very low state should possess maximal memory. Again the

Figure 3
Schematics to show the costs and benefits of memory. (a) We start by
assuming that F(x, t1 1, T ) is a linear function (although generally it
is not). We assume that the state of our organism at age t is x#. A solid
orange arrow points to i(x#), the state acquired through an incorrect
response to a familiar stimulus. A dotted green line and arrow points
to u(x#), the state acquired through a response to an unfamiliar
stimulus. A dashed blue line and arrow points to c(x#), the state
acquired through a correct response to a familiar stimulus. The
potential benefit B(x#, t) of being familiar with a stimulus is F(c(x#),
t 1 1, T ) 2 F(u(x#), t 1 1, T ) and potential cost C(x#, t) of being
familiar with a stimulus is F(u(x#), t 1 1, T ) 2 F(i(x#), t 1 1, T ). (b)
If pu decreases, then u(x#) can decrease and B can increase while C
decreases. (c) If the state of the organism is very low and the cost of
living is very high (j . pu), then i(x#) ¼ u(x#) ¼ 0 while c(x#) . 0.
Consequently, C ¼ 0 and B. 0, that is, there are no costs to memory,
whereas there are benefits—thus, the memory window should be
maximally long. (d) If the cost of living is low (j , pu, see
Supplementary Appendix C), then C . 0 and B . 0 and maximal
memory may not be favored. (e) If F(x, t 1 1, T ) is convex, the ratio
of B to C increases (relative to the linear F function in (a)), and thus
an increased memory window is favored. (f) If F(x, t 1 1, T ) is
concave, the ratio of B to C decreases (relative to the linear function
in (a)), and thus a decreased memory window is favored.

Figure 2
The probability of a correct response to a familiar stimulus (blue bars),
the probability of a response to an unfamiliar stimulus (green bars),
and the probability of an incorrect response to a familiar stimulus
(orange bars) as a function of memory size (with N ¼ 10). Each chart
corresponds to a different value of the rate of stimulus change, q.
These probabilities are x(1 2 bm), am, 1 2 am 2 x(1 2 bm),
respectively.
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idea is that employing a correct response to a familiar stimulus
is the only way to survive; thus, there is a premium placed on
a maximal memory window. If we had assumed that the costs of
living are lower (i.e., j, pu), then u(x#). 0 for an organism in
a very low state and optimal memory is no longer necessarily
maximal memory (see Figure 3d; in Supplementary Appendix
C, we explore the case when j , pu).
The benefit-to-cost ratio of memory, m, also depends on the

shape of the expected future reproductive value function, F.
For instance, m increases as F is made more convex (compare
Figure 3e with a). Thus, optimal memory windows are longer
for convex F functions and shorter for concave F functions
(compare Figure 3f with a). This prompts the question: what
is the general shape of the F function at any arbitrary age of
our organism? For one age, the answer to this question is
clear. At the end of the organism’s lifetime, F(x, T, T) ¼
U(x) and we specify this final fitness function. In Figure 1,
we see that a convex U leads to a longer optimal memory
window at the end of the lifetime than a concave U (see
Supplementary Appendix D).

Convergence

As mentioned, an analytical solution of the general form of
F(x, t, T ) is difficult to derive. However, we do observe a con-
vergence property in our model that is common to many
dynamic programming routines (Mangel and Clark 1988;
Houston and McNamara 1999). As we step backward in time
through repeated application of Equation 1, F(x, t, T) assumes
a form (once renormalized) that is independent of the final
fitness function, U(x). If we do not constrain m to remain
below t (mathematically possible, but biologically unjustified),
this function is also independent of time (this is a form of
strong convergence, see Houston and McNamara 1999). The
convergence is shown in Figure 4 for the examples from
Figure 1a,c. If we assume that F does strongly converge to
some function, call it H(x), then the proxy for optimal mem-
ory m**(x, t) is approximated by replacing F(x, t, T) in m with
H(x) in Equation 7. Let us call this approximate optimal
memory mH(x). We show an example of H(x) in black dots
in Figure 4a–c. For a given x value, m*(x, t)’ mH(x) for several
different t values.
However, there are a few ages (t values) where the mH(x)

approximation fails. First, for any state x, if t , mH(x), we
know the memory must be smaller than the approximation
because the organism cannot remember stimuli from before it
was born. Generally, for t values below mH(x), we find m*(x, t)
¼ t, that is, the optimal memory window is the maximum in
the allowable range (incidentally, the constraints on m, which
were ignored to compute H(x), force F(x, t, T) to deviate from
H(x) for the young ages t , mH(x)). Second, for ages close to
the end of the lifetime, t ’ T, there is a strong signature of
U(x) on F(x, t, T) (i.e., backward convergence to H(x) has not
proceeded very far). If U(x) is more convex than H(x), then
the optimal memory window bends up at the end of the

Figure 4
(a) The final fitness function U(x) ¼ 100(x/X)4 is given in gray and
U(x) ¼ 100(x/X)0.25 is given in black. These functions are
normalized to range from 0 to 1. (b) The corresponding
renormalized F(x, t, T) functions at time t ¼ 20, generated through
backward iteration of Equation 1 (with X ¼ 50, N ¼ 10, T ¼ 40,
d ¼ 0.1, pi ¼ 5, pu ¼ 10, pc ¼ 15, j ¼ 12, and q ¼ 0.1) starting
with F(x, T, T ) ¼ 100(x/X)4 (in gray) and F(x, T, T ) ¼ 100(x/X)0.25

(in black). (c) The corresponding renormalized F(x, t, T ) functions
at t ¼ 5. Both functions are approaching an equilibrium function
H(x) given in black dots in (a–c). (d) Using H(x) in place of F(x, t1 1,
T ), we calculate mH(x, t) by Equation 7 for all x and t values. Here we
show the difference between mH and m* to show the appropriateness

of the mH approximation. We see 2 ‘‘types’’ of deviations between
mH and m*. The constraint deviations occur where the mH

approximation is outside of the allowed range for memory (e.g., mH(x,
t) . t) and the signature deviations occur when mH is near attainable
memory values, but other memory values are optimal (these deviations
are due to the fact that H(x) is an inappropriate approximation for
F(x, t, T )). In the case shown, the signature deviations (mH 2 m*) are
positive, suggesting that there is optimal decline in memory for large
values of t (note that we are dealing with the concave final fitness
function shown in black in a).
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lifetime. However, if U(x) is more concave than H(x), then the
optimal memory window bends down at the end of the life-
time. In such a case, it would be optimal to reduce long-term
recall at the end of the lifetime, that is, memory loss would be
optimal.
We can now start to understand the age-related phases of op-

timal memory that we saw in Figure 1. The memory lift at the
beginning of the lifetime occurs because the young age of the
organism limits its recall. We call this a ‘‘constraint deviation’’
in Figure 4d because the young organism is constrained by its
age to remember less than mH(x). The other constraint de-
viation is for organisms in low state where mH(x) is predicted
to be infinite, but the organism must have finite memory. The
memory plateau begins at ages larger than mH(x) and gently
slopes toward the end of the lifetime. The deviations here we
call ‘‘signature deviations’’ because the signature of the final
fitness function is echoed in the optimal memory at the end
of the organism’s lifetime, where U functions that are convex
relative to H(x) lift final optimal memory and relatively con-
cave U functions (e.g., like that used to produce Figure 4d)
depress final optimal memory.

DISCUSSION

Using a dynamic programming approach, we have suggested
that optimal retrieval of memories should not be expected
to be constant but rather should change with the age and state
of the organism. Thus, this model proposes that specific
changes in memory (e.g., loss of memory retrieval toward
the end of the lifetime) could be adaptive. Of course, these
findings do not deny that there may be other nonadaptive fac-
tors or constraints that affect memory retrieval, such as the gen-
eral deterioration of memory for older individuals due to
inevitable breakdown of neural function. Rather, this model
simply states that it is not necessary to invoke such constraints
and that an organism that maximizes its future reproductive
output is expected to alter its retrieval of memories under
certain circumstances.
We should note that, even within the context of our model,

there are changes in memory retrieval that result from con-
straints. For instance, an organism is forced to have shorter
memory windows when it is younger because it cannot have
windows that exceed its age. Mathematically, we could iterate
recursion (1) without constraining the memory window, m, to
be less than the current age of the organism, t. If m can
assume any positive value, we have a situation that an organ-
ism can ‘‘remember’’ events before it was born. This exercise,
although biologically unrealistic, reveals that our convergence
approximation, mH, is a good approximation of the optimal
m value all the way to the youngest age, thus demonstrating
that constraints keep the memory window small early in the
lifetime.
However, this same mathematical exercise does not affect

results from later in life. Thus, it is not constraints on m that
lead to memory decline or increase toward the end of the
lifetime. Why is optimal memory changing here? Within our
model, memory generates a variance in payoffs. This means
that the concavity of the maximal expected future reproduc-
tive success function, F, will be important. Specifically, the
spread in payoffs are translated positively for convex F and
negatively for concave F. Of course, F changes with age. Spe-
cifically, for the oldest age, F is given by U, the final fitness
function, and as age decreases, F converges to another func-
tion, which we have called H. If U is more convex than H, then
memory tends to increase toward the end of the lifetime. If U
is more concave than H, then memory tends to decrease to-
ward the end of the lifetime. When H does not have much
curvature (e.g., Figure 4), then strongly convex or concave

final fitness functions will tend to leave ‘‘signatures’’ on the
optimal memory surface (gradual increase or gradual decline,
respectively). The question remains whether a convex or con-
cave final fitness function is more biologically realistic. If fit-
ness returns consistently diminish (as opposed to accelerate)
with energy reserves, then a concave function would be apt. In
such a case, our model predicts that optimal memory should
decline with age, an effect due to the signature of the fitness
function rather than constraints on memory.
Many theoretical treatments on the evolutionary advantages

of learning center on environmental variability (Arnold 1978;
Johnston 1982; McNamara and Houston 1987; Stephens 1987,
1991; Mangel 1990; Cohen 1991; Bergman and Feldman 1995;
Feldman et al. 1996; Dukas 1998; Shettleworth 1998; Kerr and
Feldman 2003). Consistent with other models, our model
shows that as stimuli in the environment become less reliable,
optimal recall (at any age or state) tends to decrease. How-
ever, the rate of stimulus change, q, will also have a strong
effect on the shape of H, the function to which the maximal
expected future reproductive success function converges. As
the concavity of H changes, this will affect the differences in
concavity between U and H and thus will change the potential
for optimal memory decline or increase (see above).
When the organism is in a low state (and the cost of living is

high, which we assume in our model), maximal memory is op-
timal. Consistent with this prediction, Pravosudov and Clayton
(2001) found that mountain chickadees maintained on a lim-
ited and unpredictable food supply made fewer errors on
a cache recovery task than well-fed birds (see also Friedrich
et al. 2004; Orsini et al. 2004). Of course, the motivation of an
organism with low energy levels and high costs of living might
be very different than that of an organism with high energy
levels and low costs of living, and cognitive performance may
vary with motivation.
Although this model provides some novel insights, there are

a number of potential extensions that could be explored. First,
reproduction in the model occurs only at the end of the life-
time (a form of semelparity). It is not difficult to incorporate
reproduction throughout the lifetime (Mangel and Clark
1988; Houston and McNamara 1999). We explore an iteropar-
ous extension to our model in Supplementary Appendix E,
where we show that optimal memory can still decay with age
despite repeated individual bouts of reproduction. Thus,
adaptive memory decay does not depend on an assumption
of semelparity. Second, we assumed that the cost of living, j,
was constant. However, it has been proposed that memory
itself may be explicitly costly (Dukas 1999; Mery and Kawecki
2005; Kuhl et al. 2007), and memory performance is sensitive
to imposed costs (Bednekoff and Balda 1997; Laughlin and
Mendl 2004). We could easily include cost by writing j as an
increasing function of memory (j(m)). We consider this
model extension in Supplementary Appendix F. Although ex-
plicit costs to memory depress optimal values, we see that
optimal memory can still decay with age. With explicit
memory costs, we can also reorder the payoffs, such that using
memory is always more valuable than sampling from scratch:
pu , pi , pc. Such an ordering could apply to the case where
stimulus change leads to only a slight decrease in payoff for
a remembered behavior. Again, we see that optimal memory
can still decrease with age in such a case (Supplementary
Appendix F). We have found that our basic results are
robust to alterations in several of our model assumptions
(Supplementary Appendices E and F).
Our model offers a new perspective on the evolutionary rea-

sons for deterioration of memory with age. The classic theories
of senescence (Medawar 1952; Williams 1957) suggest that
deterioration with age occurs either due to selection for genes
that are beneficial early in life but detrimental later in life
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(antagonistic pleiotropy) or due to the inefficacy of selection
to weed out deleterious mutations late in life when reproduc-
tive output decreases (mutation accumulation). These evolu-
tionary explanations generally posit that, all else being equal,
decay at any age is selected against (and thus senescence is
either a side effect or a selectively elusive phenomenon).
Some of the classic explanations of memory loss (e.g., synaptic
decay) fit well within this classic theoretical framework. In
contrast, our model claims that memory loss can in and of
itself be adaptive. We expect this to be the case when condi-
tion is poor, the individual is near the end of its lifetime, and
fitness returns consistently diminish with energy reserves.
Furthermore, our model makes several specific predictions

about changes in memory (Table 2). First, and in agreement
with other models, memory length should decrease as the
environment becomes less reliable (McNamara and Houston
1987; Mangel 1990; Kerr and Feldman 2003). Second, mem-
ory length should roughly increase with the cost of living (see
Supplementary Appendix C). Third, cost of living should in-
teract with state of the organism. If the cost of living is high,
organisms in a very poor state should have greater memory
length, whereas if the cost of living is low, organisms in a very
good state should have short to no memory length. Fourth
(and unlike general theories of senescence), our model does
not predict inevitable decline of memory length. The behav-
ior of memory length with age depends on the relationship
between the state of the organism and its final fitness. How-
ever, if fitness shows diminishing returns with state, memory
should decline gently with age for intermediate levels of stim-
ulus reliability.
The validity of this model can be addressed empirically. For

organisms at reproductive age, the relationship between energy
(or fat) reserves and number of offspring is an empirical issue.
The predicted changes in memory could be checked (perhaps
within a comparative framework) against the observed concavity
of this relationship. Individuals with highmetabolic demands of
living tend to demonstrate superior memory capability while in
poor states (e.g., Pravosudov and Clayton 2001; Friedrich et al.
2004; Orsini et al. 2004). It would be interesting to repeat such
experiments with organisms that possess a low cost of living
(where our model predicts that the effect will be less dramatic).
Given the rich history of empirical work on memory, models
such as this one will be important in both reconciling seem-
ingly disparate observations and suggesting new avenues of re-
search in the behavioral ecology of memory. The essential
point underscored by this model is that learning is a dynamic
process and critical components of that process, such as mem-
ory length, may change in optimal ways within the lifetime of
the learner.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.beheco.
oxfordjournals.org/.
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APPENDIX

A: Derivation of the dynamic programming recursion

In order to derive recursion (1), we list the possible events that
can occur at time step t to an organism in state x. Let U be the
event that our organism is unfamiliar with the stimulus it expe-
riences. LetC be the event that our organism is familiar with the
stimulus and employs the correct behavior (i.e., the correct be-
havior to the stimulus has not changed since its most recent
recording in the organism’s memory). Let I be the event that
our organism is familiar and employs an incorrect behavior (i.e.,
the correct behavior to the stimulus has changed since its most
recent recording in the organism’s memory). We let the dummy
event variable,A, stand for one of the stimulus encounter events,
that is, A 2 {U,C, I}. LetXx be the event that the organism’s state
is x, Tt be the event that an organisms age is t, and Mm be the
event that an organism’s memory window is m.
Consider that our organism in state x at age t has memory size
m, where this memory window may not be optimal. After this
time step, we assume that the organism adjusts its memory
window optimally (i.e., we assume m(x, s) ¼ m*(x, s) for all
s ( t 1 1). We call this organism the ‘‘nearly optimal’’ learner.
Let the expected future reproductive success of the nearly
optimal learner be given by Fm(x, t, T ). In order to calculate
Fm, we let EF [A|Xx\Tt] be the expected future reproductive
success for the nearly optimal learner if event A occurs (given
that the organism’s state is x and its age is t). We let Pr{A|Mm}
be the probability of event A, given our organism has a mem-
ory window of size m. By the law of total expectation, we must
have

Fmðx; t; T Þ ¼
X

A2fU;C;Ig
EF ½AjXx \ Tt&PrfAjMmg; ðA1Þ

Our nearly optimal learner becomes a ‘‘completely optimal’’
learner if it picks the memory window size m (where 0 !
m ! t) that maximizes Fm(x, t, T) (i.e., if it chooses m ¼
m*(x, t)). Thus, we can express the maximal expected future
reproductive success of our completely optimal learner in
state x at age t as

F ðx; t; T Þ ¼ max
0!m

m
!t

Fmðx; t; T Þ: ðA2Þ

Now we simply need to derive the expectations and the prob-
abilities in Equation A1. Because we assume that the nearly

Table 2

Broad predictions from the model

Parameter/variable Condition Optimal memory length

Probability of stimulus change (q) Stimuli become less reliable Decreases
Cost of living (j) Cost of living increases Increases
State of organism (x) Poor state, high cost of living Long

Good state, low cost of living Short
Age (t) Relatively convex final fitness function Increases at the end of life

Relatively concave final fitness function Decreases at the end of life
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optimal learner behaves optimally from time t 1 1 onward,
the expectations are simply

EF ½UjXx \ Tt& ¼ ð12 dÞF ðuðxÞ; t1 1; T Þ; ðA3Þ

EF ½CjXx \ Tt& ¼ ð12 dÞF ðcðxÞ; t1 1; T Þ; ðA4Þ

EF ½IjXx \ Tt& ¼ ð12 dÞF ðiðxÞ; t1 1; T Þ: ðA5Þ

For example, if the stimulus is unfamiliar, the organism
receives a payoff of pu and pays a metabolic cost of j (with
the constraint that the next state is between 0 and X). Thus, if
the organism survives from age t to age t 1 1 (which occurs
with probability 1 2 d), the organism changes from state x
at age t to state u(x) ¼ chop(x 1 pu 2 j; 0, X) at age t 1 1.
Because the organism is assumed to remember optimally
from t 1 1 onward, the expected future reproductive success
at t 1 1 is the maximal expected future reproductive success,
which is given by F(u(x), t 1 1, T). Thus, given that a dead
organism has zero future reproductive success (and given that
death occurs with probability d), the expected reproductive
success is EF ½UjXx \ Tt& ¼ ð12dÞF ðuðxÞ; t11; T Þ1dð0Þ ¼
ð12dÞF ðuðxÞ; t11; T Þ: The other EF values are derived
similarly.
Now we turn to the probabilities in Equation A1. We assume
that every time step, a stimulus is chosen randomly from the N
stimuli, so the probability that the currently experienced stim-
ulus does not occur in any one of the last m time steps must be
(N 2 1)/N. Because we assume that each stimulus occurs in-
dependently of previous stimuli, the probability that the cur-
rent stimulus does not occur in all the previous m time steps is

PrfUjMmg ¼
!
N 2 1
N

"m

: ðA6Þ

Equation A6 gives the probability that the organism does not
remember the current stimulus (i.e., event U occurs) given
that the organism has a memory window of size m.
We know that without any memory, the stimulus cannot be fa-
miliar and therefore Pr{C|M0} ¼ Pr{I|M0} ¼ 0. To calculate
Pr{C|Mm} and Pr{I|Mm} when m . 0, it helps to condition on
other events. Let F be the event that the stimulus is familiar.
because F is the complement of U, we must have

PrfFjMmg ¼ 12

!
N2 1
N

"m

: ðA7Þ

Let Sr be the event that the stimulus was most recently re-
corded in memory r time steps before the current time step
(thus, Sr is only defined for r ! m). Given that an organism is
dealing with a familiar stimulus and has a memory size of m,
the probability that the most recently recorded encounter
with the current stimulus happened r time steps back is

PrfSrjF \Mmg ¼ Nm2 rðN2 1Þr2 1

Nm 2 ðN2 1Þm : ðA8Þ

To derive Equation A8, let us consider the memory window of
size m as being constructed of m ‘‘slots,’’ ordered from 1 (the
most recent memory) to m (the most distant memory). There
are a total of Nm 2 (N 2 1)m sequences of stimuli in memory
where the current stimulus occurs in at least one of the m
slots. How many of those sequences have the current stimulus
occurring most recently in slot r? For this to occur, we must
have any stimulus except for the current stimulus in each of
the slots from slot 1 to slot r 2 1 (a total of (N 2 1)r21

combinations for these slots), whereas we can have any stim-

ulus in each of the slots from slot r 1 1 to slot m (a total of
Nm2r combinations for these slots). Note that we must have
the current stimulus in slot r (a single ‘‘combination’’ for this
slot). Thus, the total number of combinations for the current
familiar stimulus to be located most recently in the rth slot is
(N 2 1)r21Nm2r and Equation A8 follows. Given that our or-
ganism with memory length m experienced a familiar stimulus
most recently r time steps back, the probabilities that the
behavior employed is correct is

PrfCjSr \ F \Mmg ¼ ð12 qÞr; ðA9Þ

because the probability of stimulus change every time step is q,
and change occurs independently each time step. The condi-
tional probability giving an incorrect behavior is calculated
easily by noting that IjSr \ F \Mmis the complement of
CjSr \ F \Mmand therefore

PrfIjSr \ F \Mmg ¼ 12 ð12 qÞr: ðA10Þ

Putting everything together, we have

PrfCjMmg¼
Xm

r¼1

PrfCjSr \ F \MmgPrfSrjF \MmgPrfFjMmg;

ðA11Þ

PrfIjMmg ¼
Xm

r¼1

PrfIjSr \ F \MmgPrfSrjF \MmgPrfFjMmg:

ðA12Þ

Substituting Equations A7–A9 into Equation A11 and
substituting Equations A7, A8, and A10 into Equation A12
and then simplifying gives

PrfCjMmg ¼ 12 q
11 ðN2 1Þq

#
12

!
ðN 2 1Þð12 qÞ

N

"m$
; ðA13Þ

PrfIjMmg ¼ 12

!
ðN2 1Þ

N

"m

2
12 q

11 ðN2 1Þq

#
12

!
ðN 2 1Þð12 qÞ

N

"m$
:

ðA14Þ

Now, plugging Equations A3–A6, A13, and A14 into Equation
A1 and then plugging Equation A1 into Equation A2 yields
Equation 1, our backward recursion.
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